
Towards a Programmable Agent-based Distributed Architecture for
Enterprise Application and Service Management

Luciano P. Gaspary, Luis F. Balbinot, Roberto Storch, Fabrı́cio Wendt, Liane R. Tarouco
Federal University of Rio Grande do Sul

Institute of Informatics
Av. Bento Gonçalves, 9500 – Agronomia – CEP 91591-970 – Porto Alegre, Brazil

Abstract—The popularization of the electronic commerce and the grow-
ing use of this business modality by companies as well as the growth in
the number of applications, protocols and services that come to be execut-
ed in computer networks generate difficulties for management tools. Most
of these tools are able to monitor a previously established set of protocols;
monitoring of new protocols becomes possible with the update of firmware
or through development kits that are hard to be assimilated by network
managers. Additionally, these tools usually have little or no ability to act
automatically when facing unexpected behaviors from these protocols. This
paper presents an architecture for distributed management of enterprise
networked applications, high-layer protocols and network services based
on programmable agents. By means of a high-level graphical and textual
language, the network manager is able to specify protocol traces in order to
do FCAPS (Fault, Configuration, Accounting, Performance and Security)
management. The observation of these traces in the network traffic leads
to actions, which are also determined by the network manager. This pa-
per describes the language used to specify traces, the architecture and some
examples of application that validate the proposal.

Keywords—High-layer protocol management, Service management, Pro-
grammable agents.

I. INTRODUCTION

New protocols, applications and network services are con-
stantly being incorporated into our daily routines and executed
in computer networks. The electronic commerce popularization
and the growing use of this business modality by companies, for
example, implies using the network to send crucial data relat-
ed to the organization and its customers. The applications and
protocols used to make this business feasible are critical and,
therefore, need to be carefully monitored and managed.

Not only critical business applications require special atten-
tion. New protocols are often made available to the market to
serve a growing number of specific functionalities and are read-
ily adopted by network users. As a result of this fast spread,
protocols that have not been thoroughly tested yet, or even faulty
protocols, are disseminated to the network consuming commu-
nity. According to Ho et al. [1] in many cases these anomalies
are the cause of the decrease in the performance of the network
and end up going unnoticed. Additionally, due to the differences
among versions, entities (processes that implement a given pro-
tocol) have difficulties to establish and retain communication
among themselves.

We believe that most of the research done so far has tried to
provide mechanisms that ensure greater availability and better
performance of the network (e.g. Hood and Ji work on proac-
tive fault detection [2]). While the solutions to manage its phys-
ical infrastructure are well established and tested, there is still
the need to investigate ways of providing an effective manage-
ment of protocols, applications and services that flow over this
infrastructure.

The existing management tools are not fully prepared to en-
able the monitoring of these new applications and protocols.

Most of them only allow the monitoring of a monolithic set of
protocols. The ability to observe new protocols depends on the
updating of the firmware of the monitoring hardware or on the
programming in low level languages like the extensible probe
architecture proposed by Malan and Jahanian [3]. Due to the
complexity of the task, most network managers do not take this
possibility into account.

Other solutions such as Tivoli Enterprise [4] are intrusive be-
cause they require the applications, when being developed, to
make special calls to monitoring procedures. This approach is
suitable for the monitoring of in-house developed applications,
but cannot be used to manage protocols from proprietary ap-
plications (e.g. web browsers and servers, e-mail clients and
servers). Additionally, there is the need to invest in the training
of developers for the use of these monitoring APIs.

Regarding monitoring, some approaches such as the IETF
RMON2 MIB (Remote Network Monitoring Management
Information Base version 2) store the number of packets
sent/received (by a host or exchanged by host pairs) of a pre-
defined set of high-layer protocols supported by the probe [5].
Gaspary et al. describe in [6], [7] the advantages and limitations
of the RMON2 MIB. One of RMON2 weaknesses is that it does
not store any information related to performance, but it has been
discussed by the Remote Network Monitoring group at the IETF
[8]. Furthermore, we should point out that many management
tools are limited to monitoring and the network manager has to
take actions manually when unexpected behaviors from these
protocols are observed.

In this paper we present an architecture for distributed man-
agement of enterprise networked applications, high-layer pro-
tocols and network services. Through a graphical and textual
language based on finite state machines, the network manager
defines protocol traces to be observed. These specifications are
readily received by one or more programmable agents that im-
mediately start to check whether a defined trace occurs or not.
The observation of these traces in the network traffic triggers
actions, which are also determined by the network manager.

The paper is organized as follows: section 2 describes the lan-
guage to specify protocol traces. In section 3 the architecture is
presented. Some application examples that describe how this ar-
chitecture could be used to fulfil fault, accounting, performance
and security management are presented in section 4. In section
5 we present a summary and concluding remarks.

II. GRAPHICAL AND TEXTUAL LANGUAGE FOR PROTOCOL

TRACE REPRESENTATION

In this section we propose a graphical and textual language for
the representation of high-layer protocol traces. The languages



are not equal. The textual one makes the complete representa-
tion of a trace possible, including the specification of both the
state machine and the events that trigger the transitions. On the
other hand, using the graphical language one can graphically
represent the state machine and only label the events that trigger
the transitions.

A. Organization of a Specification

The specification of a trace begins with the keyword Trace
and ends with EndTrace. Initially, the manager may describe
some optional items to the specification (see figure 1, lines 2–
7). Next, it is broken down into three sections: Messages-
Section (lines 8–10), GroupsSection (lines 11–13) and
StatesSection (lines 14–16), where messages to be ob-
served, grouping and state machines that describe the trace are
respectively specified.

 
1 

2 
3 
4 
5 
6 
7 

8 
9 

10 

11 
12 
13 

14 
15 
16 

17 

Trace “Attempt to access non-authorized Web page” 

Version: 1.0 
Description: Accounting of 403 message in response to GET. 
Key: HTTP, 403, forbidden access 
Port: 80 
Owner: Luciano Paschoal Gaspary 
Last Update: Tue, 15 Aug 2000 21:51:02 GMT 

MessagesSection 
… 
EndMessagesSection 

GroupsSection 
… 
EndGroupsSection 

StatesSection 
… 
EndStatesSection 

EndTrace 

Fig. 1. Schematic representation of a textual specification.

If the trace to be monitored belongs to a single application-
layer protocol then the network manager may specify the TCP
or UDP port number using the Port parameter (line 5). It will
simplify packet classification during the monitoring phase.

B. State Machines

The trace of a protocol is defined through a finite state ma-
chine. The network manager may define a model to monitor just
a part of or the whole protocol, or interactions that comprehend
more than one protocol. Figure 2 shows two trace examples. In
the first example (a), the manager is interested in monitoring the
attempts to access non-authorized web pages. The trace shown
in (b) does not describe a single protocol; it is rather made up of
a name resolution request (DNS protocol), followed by an ICMP
Port Unreachable message. This trace occurs when the
host where the service resides is on, but the named daemon is
not running.

As one can see states are represented by circles. The initial
state has the label idle associated to it. The final state is rep-
resented by two concentric circles. In both examples the initial
and final states are the same (idle). Transitions are represented
by unidirectional arrows. A continuous arrow indicates that the
transition is triggered by the client host, whereas a dotted arrow

  

(a) 

GET 

2 

HTTP/1.1 403 

2 

DNS request 

ICMP message 
Port Unreachable  

(b) 

idle idle 

Fig. 2. Graphical representation of a trace. (a) Attempt to access a non-
authorized web page. (b) DNS request not replied because named daemon
is not executing.

denotes that it is caused by the server host. The text associated
to a transition only labels the event (specified as a message or
grouping in the textual language) that will trigger it. It means
that the whole specification of a transition only can be done us-
ing the textual language.

The graphical representation shown in figure 2 can be mapped
to the textual specification presented in figure 3.

(a) 

FinalState: idle 
State idle  
“GET” GotoState 2 
EndState idle 

State 2  
“HTTP/1.1 403” GotoState idle 
EndState 2 

FinalState: idle 
State idle  
“DNS request” GotoState 2 
EndState idle 

State 2  
“ICMP message” GotoState idle 
EndState 2 

(b) 

Fig. 3. Textual representation of state machines.

C. Transitions

In addition to making a high-level representation of traces, it
is necessary to describe what causes the change of states. Be-
fore describing the adopted solution, it is important to high-
light that high-layer protocols are specified in many different
ways. Larmouth classifies them as character or binary-based
[9]. Character-based protocols are defined as a set of text lines
coded in ASCII (e.g. HTTP and SMTP). Binary protocols, on
the other hand, are defined as strings of octets or bits (e.g. TCP).

Considering the differences between both protocol types, we
propose state transitions to be represented by a positional ap-
proach. Taking the example shown in figure 2a, we present (see
figure 4) how to represent the transition HTTP/1.1 403.

 
1 
2 
3 
4 
5 
6 

Message “HTTP/1.1 403” 
MessageType: server 
// OffsetType Encapsulation FieldNumber Verb Description 
FieldCounter Ethernet/IP/TCP 0 HTTP/1.1 “Protocol version” 
FieldCounter Ethernet/IP/TCP 1 403 “Access forbidden” 
EndMessage 

Fig. 4. Representation of character-based protocol fields.

As the transition is expected to be triggered by the server
host, one must set the MessageType field to server (line
2). Since both protocol fields (HTTP/1.1 and 403) belong to
a character-based protocol, the search for their positions within



the packets is made by fields (FieldCounter, lines 4–5). In
this example, HTTP/1.1 is the first string that appears on the
message and therefore its offset is 0 (third parameter in line 4).
The second string to appear is 403 and its offset is 1 (line 5). For
each protocol field defined in a message it is also necessary to in-
form where to look for it (encapsulation Ethernet/IP/TCP,
lines 4–5).

When the transition is caused by a binary protocol, the offset
is presented in bits (BitCounter). In this case, it is necessary
to inform where the field starts (FirstBit) and the number of
bits to be observed from this offset on (NumberOfBits). Fig-
ure 5 shows the initial part of the DNS protocol header. A stan-
dard DNS request can be recognized by two fields: QR (when
set to 1 indicates a request to the server) and OPCODE (when set
to 0 represents a standard query). Field QR is 16 bits far from
the beginning of the header and its size is 1 bit. Field OPCODE
starts in the seventeenth bit and occupies 4 bits.
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 bits 

ID 

QR OPCODE AA TC RD RA Z RCODE 

Fig. 5. Beginning of the DNS protocol header.

In figure 6 the textual representation of a standard DNS re-
quest is shown.

 
Message “DNS request” 
MessageType: client 
// OffsetType Encapsulation FirstBit NumberOfBits Verb Description 
BitCounter Ethernet/IP/UDP 16 1 1 “field QR” 
BitCounter Ethernet/IP/UDP 17 4 0000 “field OPCODE” 
EndMessage 

 
 Fig. 6. Representation of binary protocol fields.

It is possible to group one or more messages into one sin-
gle transition. For example, in figure 2a it would be possible
to change the HTTP/1.1 403 with the grouping HTTP/1.1
4XX. In this case the trace would monitor the rate of all WWW
accesses resulting in error generated by client requests (4XX)
instead of only observing the occurrence of forbidden access at-
tempts. Figure 7 shows the representation of this grouping (lines
21–23).

 
1 

2 

3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

13 
14 
15 
16 

MessagesSection 

… 

Message “HTTP/1.1 400” 
MessageType: server 
FieldCounter Ethernet/IP/TCP 0 HTTP/1.1 “Protocol Version” 
FieldCounter Ethernet/IP/TCP 1 400 “Syntax error” 
EndMessage  

Message “HTTP/1.1 401” 
MessageType: server 
FieldCounter Ethernet/IP/TCP 0 HTTP/1.1 “Protocol Version” 
FieldCounter Ethernet/IP/TCP 1 401 “Need user authentication” 
EndMessage 

Message “HTTP/1.1 403” 
MessageType: server 
FieldCounter Ethernet/IP/TCP 0 HTTP/1.1 “Protocol Version” 
FieldCounter Ethernet/IP/TCP 1 403 “Forbidden access”     (cont.)  

 
17 

18 

19 

20 

21 
22 
23 

24 

25 

26 
27 
28 
29 

30 
31 
32 

33 

EndMessage                                                                         (cont.) 

…                                                                                            

EndMessagesSection                                                             

GroupsSection                                                                        

Group “HTTP/1.1 4XX” 
Messages: “HTTP/1.1 400”, “HTTP/1.1 401”, “HTTP/1.1 403”, … 
EndGroup  

EndGroupsSection 

StatesSection 

FinalState: idle 
State idle 
“GET” GotoState 2 
EndState idle 

State 2 
“HTTP/1.1 4XX” GotoState idle 
EndState 2 

EndStatesSection 

Fig. 7. Representation of message grouping.

In some cases the network manager may be interested in ob-
serving the occurrence of a certain string within the data field
of a certain protocol, no matter where it is located. To do that,
in the definition of such a message one must use NoOffset
as the OffsetType parameter. This feature is interesting, for
instance, to observe the attempt of an intrusion. The example
presented in figure 8 defines that every TCP packet must be test-
ed for the occurrence of the string /etc/passwd (line 4).

 
1 
2 
3 
4 
5 

Message “/etc/passwd” 
MessageType: client 
// OffsetType Encapsulation Verb 
NoOffset Ethernet/IP/TCP /etc/passwd 
EndMessage 

 
 Fig. 8. Non-specified offset message field.

We have also created a mechanism to allow the determination
of a timeout to a transition to occur. To do that one must asso-
ciate a timeout value (in milliseconds) to the message definition
(see figure 9, line 3). When not defined, a default value is used
by the network monitor.

 
1 
2 
3 
4 
5 

Message … 
MessageType: … 
MessageTimeout: 5000 
… 
EndMessage 

 
Fig. 9. Textual representation of timeouts.

III. THE PROGRAMMABLE AGENT-BASED DISTRIBUTED

ARCHITECTURE

The architecture we propose is an extension of the existing
distributed management infrastructure standardized by the IETF
[10] with high-layer protocol and network service management
capabilities. Figure 10 shows the main components of the ar-
chitecture. It is composed of management stations, mid-level



managers, programmable monitoring agents and programmable
action agents.

Repository 

SNMP  
(2) 

   

Monitoring Agent 

Script 
Mib 

RMON2 

engine 

Monitored service host 

   

Action Agent 

Script 
Mib 

E
ngine 

Service 

 
Management 
station 

Mid-level  
Manager 

   
Script 
Mib 

Engine 

SNMP 

SNMP 
 

(8) 

HTTP 

HTTP (1) 

 (3) 

(4) (7) 

(5) 

(6) 

(9) 

(10) 

Fig. 10. Components of the architecture.

Based on the Script MIB [11], the architecture provides
mechanisms for the delegation of management tasks to mid-
level managers, which interact with monitoring and action
agents to have them executed. Specifications of protocol traces
according to the language presented in the previous section are
used by mid-level managers to program the monitoring agents.
Once programmed these agents start to monitor the occurrence
of the traces. The information obtained is analyzed by the mid-
level managers, which may ask action agents for the execution
of procedures, resulting in the automation of several manage-
ment tasks. The following sub-sections describe the components
of the architecture and their interactions with each other.

A. Management Station

The most important activities accomplished by the network
manager from the management station are (a) specification of
protocol traces and actions, (b) specification, delegation, obser-
vation and interruption of management tasks and (c) receipt and
visualization of traps.

As the whole architecture is based on the Script MIB, pro-
tocol traces, actions and management tasks are scripts executed
by monitoring agents, action agents and mid-level managers, re-
spectively. Protocol traces are specified by the network manager
using the language previously presented. Actions are scripts de-
veloped using Java or any scripting language such as TCL and
Perl. Management tasks may also be implemented using any
language and coordinate monitoring and action agents. Such a
script programs the monitoring agents, observes the occurrence
of the trace and activates action agents when a condition associ-
ated to a protocol trace holds. The same script may also report
events to the management station raising traps.

At the management station the network manager can specify
traces using a graphical tool (see figure 11) or, if he knows the
language, by editing a text file. The same occurs with actions

and management tasks. The specification of protocol traces, ac-
tions and management tasks are stored in the repository via the
HTTP protocol (figure 10, see flow (1) in diagram).

Communication between the management station and the
mid-level managers takes place using the SNMP protocol
(Script MIB) (2). The manager can delegate a management task
to a mid-level manager as well as abort it at any time. Inter-
mediate and final results of the execution of a management task
are stored directly at the Script MIB of the mid-level manager
responsible for the task and can be retrieved by the management
station using the SNMP protocol. The management station may
also receive SNMP traps from the mid-level managers.

 

Fig. 11. Prototype of the tool for trace specification.

B. Mid-level Manager

Mid-level managers execute and monitor management tasks
delegated by the management station and report the most im-
portant events to it. The number of mid-level managers is de-
termined by the network manager and depends on the size and
complexity of the infrastructure to be managed.

The process of configuring mid-level managers is the follow-
ing: the network manager defines a management task and stores
it at the repository (1). Next, the activation of the task must be
scheduled using the Script MIB (2). In order to do that, the mid-
level manager has to be informed about the location of the task
(script). When activated, the task is retrieved from the repository
using the HTTP protocol (3).

The script executed by the mid-level manager installs the pro-
tocol trace (4) and the action script (8), requests the monitoring
agent to start observing the occurrence of the protocol trace just
installed (4), polls RMON2 variables periodically to monitor the
occurrence of the trace (7) and, depending on what is observed,
dispatches the execution of the action script (8) or raises a trap
to the manager (2). The script communicates with the agents
using the SNMP protocol.

C. Monitoring Agent

The monitoring agents are responsible for observing the traf-
fic on the network segment where they are installed. They are
configured by mid-level managers and are called programmable



because they are able to monitor protocol traces delegated dy-
namically by the network manager. This flexibility is obtained
through the language presented in section II. When the mid-
level manager sets the monitoring agent up (4), the former de-
fines which protocol trace it should retrieve (it is indicated with-
in the script that implements the task). Once retrieved the trace
file is loaded by the monitoring engine (5) and the observation
starts.

Whenever the occurrence of the trace is observed between any
pair of hosts, information is stored within an RMON2-like MIB
(6). This MIB is different from the standard because the pro-
tocolDir group is writable in our approach. Therefore the
probe stores statistics according to the protocol traces of inter-
est to the network manager. Additionally, the granularity of the
monitoring becomes greater. Instead of storing overall statistics
on traffic generated by a given protocol, statistics are generated
according to the occurrence of specified traces or transactions.

The alMatrix group from RMON2 MIB stores statistics
on the trace when the latter is observed between every pair of
hosts. Table I shows the contents of the alMatrixSD ta-
ble. It gathers the observed number of packets and octets ex-
changed between every pair of hosts (client/server) using the
protocol traces being monitored by the probe. In the exam-
ple, two traces were observed: Attempt to access non-
authorized web page and DNS service monitor-
ing (previously shown in figure 2a and b).

TABLE I

INFORMATION OBTAINED BY REFERRING TO THE ALMATRIXSD TABLE.

SourceAddress DestinationAddress Protocol Pkts Octets
17.16.10.1 17.16.10.2 Attempt... 254 120.212
17.16.10.6 20.24.20.2 Attempt... 20 10.543
17.16.10.1 17.16.10.33 DNS Serv... 4 4.350

17.16.10.32 17.16.10.33 DNS Serv... 8 7.300

The disadvantage of using RMON2 MIB is that it does not
have objects capable of storing information related to perfor-
mance. For this reason, our group is currently considering the
possibility of using, in addition to that, an RMON2 extension,
such as Application Performance Measurement MIB [8]. Ta-
ble II shows the kind of information stored by this MIB. The
first line shows that the trace Successful WWW access
has been observed 127 times between hosts 17.16.10.12 and
17.16.10.2. Additionally, the mean response time was 6 sec-
onds.

TABLE II

MIB WITH INFORMATION ON PERFORMANCE.

Client Server Protocol Suc. Unsuc. Resp.
17.16.10.12 17.16.10.2 Suc.WWW 127 232 6 sec.
17.16.10.12 20.24.20.2 Suc.WWW 232 112 17 sec.
10.10.135.25 17.16.10.2 SYN Flood 1.023 56 3 sec.

D. Action Agent

Action agents reside in hosts where network services are ex-
ecuted. Their function is to perform a given operation on these

services. Let us take as example the DNS service. Figure 2b
shows a trace that enables to detect when the named daemon is
not in execution. There may be a management task, configured
in the mid-level manager, that monitors the occurrence of this
trace. If that is the case, the action to be taken is contacting the
action agent (see flow (8) in figure 10), which is located in the
host where the DNS service is installed, and request the execu-
tion of a script to restart the daemon (9, 10) (see the example of
such a script developed in Perl in figure 12). The result obtained
by the action agent is accessible to the mid-level manager (8),
which may send it to the manager for notification purposes (2).

#!/usr/bin/perl 
 
my $pid; 
 
# Verify if the process named is executing. 
if (-e "/var/run/named.pid") { 

$pid = `/bin/cat /var/run/named.pid`; 
} 
 
# If named is running, restart it using a HUP signal, otherwise 
# instantiate the process again. 
if (defined $pid) { 

print "Restarting named (sending HUP signal)...\n"; 
`/bin/kill -HUP $pid`; 

} else { 
print "Starting named (was not running)...\n"; 
`/usr/sbin/named &`; 

} 
 
# Test if the process is executing. 
if (-e "/var/run/named.pid") { 

$pid = `/bin/cat /var/run/named.pid`; 
print "The named daemon is up and running as PID $pid\n"; 

} else { 
print "The named daemon could not be started!\n"; 

} 

Fig. 12. Perl script to restart the named daemon.

IV. EVALUATION OF THE ARCHITECTURE: EXAMPLES OF

APPLICATION

The proposed architecture was designed to take into account
all the standard functional areas of management (FCAPS). Our
research group has explored its characteristics to validate its
usefulness for the management of enterprise applications, high-
layer protocols and network services. In the following sub-
sections we present examples of how the proposed architecture
could be used in fault, accounting, performance and security
management.

A. Fault Management

Fault management is an important target of the proposed ar-
chitecture. An example of fault management concerning to
high-layer protocols and network services is checking the avail-
ability of a network service and restart it if it is not running.
Figure 13 shows how this can be achieved using the architec-
ture. In this case the task delegated to the mid-level manager is
supposed to monitor the DNS service.

This monitoring is performed by sniffing the packets seen in
the segment. In a situation where the daemon responsible for the
DNS service is not running, the agent will observe a DNS re-



 

 

 

Local DNS Server 

Host 

Action 
Agent 

named 

Host 

 

Trace 

2 

DNS request 

ICMP message 
Port Unreachable  

Host 

 

(1) Setup monitoring agent 
(3) Dispatch monitoring of the trace 
(4) Monitoring loop 

(6) Status info 

Monitoring 
Agent 

(1) Setup monitoring agent 
(2) Setup action agent 
(3) Dispatch monitoring of the 
      trace 
(4) Monitoring loop { 

- Was the trace “Monitoring of 
   the DNS service” observed? 
- Yes: (5) Dispatch action script 
          (6) Trap to the                   
                management station 

 } 

Management task 
 

Management station 

Management 
application 

Delegation of  
management task 

(2) Setup action agent 

(5) Dispatch action script 

Mid-level 
Manager 

idle  

Fig. 13. Execution steps of a management task.

quest and some time later a Port Unreachable ICMP mes-
sage from the serving host. In this case the mid-level manager
should contact an action agent, which resides in the DNS serving
host and request the execution of a script to restart the daemon
(such as the one illustrated in figure 12). The textual specifica-
tion of the trace Monitoring of the DNS service is
shown in figure 14.

 
Trace “DNS service monitoring” 

Version: 1.0 
Description: Trace to detect  when named is not running 
Key: named, fault, DNS service 
Port: 
Owner: Luciano Paschoal Gaspary 
Last Update: Tue, 10 Aug 2000 15:30:58 GMT 

MessagesSection 

Message “DNS Request”  
// See code in figure 6. 
EndMessage 

Message “ICMP Message” 
MessageType: server 
// OffsetType Encapsulation FirstBit NumberOfBits Verb Description 
BitCounter Ethernet/IP 0 8 00000011 “Type field=00000011?” 
BitCounter Ethernet/IP 8 8 00000011 “Code field=00000011?” 
EndMessage 

EndMessagesSection 

StatesSection 

// See code in figure 3b. 

EndStatesSection 

EndTrace 

 
 Fig. 14. Trace to monitor the DNS service.

Although protocol and networked application debugging is a
subject not directly related to fault management, we point out
that a network manager can specify a complete protocol or part
of it and check whether or not the network traffic matches the
specification. This possibility is useful not only to test third-
party application, but also for specific applications of the orga-
nization. This topic however is out of the scope of the paper.

B. Accounting Management

Network users usually see the network as an inexhaustible
source. They end up adding more and more applications and
protocols to their daily routines which, for the administrator,
generates the need of constant changes in the network infras-
tructure [6], [7]. These changes involve costs and, therefore,
need to be justified. This is possible if the administrator is able
to answer simple questions such as: which users or departments
are using the network? When is it being more used? What ap-
plications are being executed? What are the activities of a given
user? Are users perceiving a proper level of service? Are ac-
quired resources being correctly allocated?

The answers to these questions may be obtained with the use
of accounting mechanisms. RMON2 is a good alternative to
monitor widely used protocols, but is not flexible enough when
one wants to monitor/account protocols specific to the organiza-
tion. The proposed architecture solves this problem, since it can
work with dynamically-defined protocol specifications.

C. Performance Management

Like accounting management, performance management is
taken care of by the architecture. For a given trace, it is possi-
ble to check how many times it occurred, the number of unsuc-
cessful occurrences, average response time of traces completed
successfully in a given time interval.

With this kind of information, the network manager can de-
termine where are the bottlenecks in his network and what are
the applications or traces that present more problems (with long
response time or timeouts).

D. Security Management

Through the graphical/textual language presented in section
II, it is possible to define traces whose observation in the net-
work may represent intrusion attempts. As an example, we have
modelled the trace for the detection of port scanning and SYN
Flood.

D.1 Port Scanning

TCP port scanning is done by sending TCP Connect (SYN)
packets to all ports of a network host in order to find out what
are the TCP services it provides. If the host does not provide
the service to a given port, it sends a TCP return packet with
the RST bit on in response to the connection attempt. Figure 15
shows the textual specification of the trace Port scanning.

The trace specification is complemented by a management
task that defines how many times the occurrence of this trace
is allowed within a certain time interval. When the number of
occurrences exceeds the specified limit, the mid-level manager
notifies the management station of a possible intrusion attempt.

D.2 SYN Flood

The SYN Flood attack is accomplished by sending a large
number of connection opening packets (packets with the SYN
flag on) with a false origin address for a given target host. This
false origin address should either be unreachable or the address
of a non-existing host (one of the reserved addresses is often
used).



 
Trace “Port scanning” 

Version: 1.0 
Descripttion: Trace based on TCP Connect and on TCP RST. 
Key: TCP, scanning, SYN, RST 
Port: 
Owner: Luciano Paschoal Gaspary 
Last Update: Tue, 16 Aug 2000 15:30:58 GMT 

MessagesSection 

Message “TCP SYN” 
MessageType: client 
// OffsetType Encapsulation FirstBit NumberOfBits Verb 
BitCounter Ethernet/IP 110 1 1 “SYN field – 1 means TCP Connect” 
EndMessage 

Message “TCP RST” 
MessageType: server 
// OffsetType Encapsulation FirstBit NumberOfBits Verb 
BitCounter Ethernet/IP 109 1 1 “RST field” 
EndMessage 

EndMessagesSection 

StatesSection 

FinalState: idle 
State idle 
“TCP SYN” GotoState 2 
EndState idle 

State 2 
“TCP RST” GotoState idle 
EndState 2 

EndStatesSection 

EndTrace 

 
Fig. 15. Trace to monitor the occurrence of port scanning.

When the target host receives these connection opening pack-
ets (SYN), it creates an input in the connection queue and sends
a response packet (SYN/ACK) to the address that requested the
connection. After sending the response packet, the target host
waits for a confirmation from the connection requester. As the
origin address of the packets has been made up, the target host
will never receive this connection confirmation (see figure 16).
In a given moment, the connection queue of the target host be-
comes full and from then on all connection opening requests are
denied and the service becomes unavailable. This unavailability
lasts some seconds, because when the target host finds out that
confirmation is taking too long, it removes the open connection
from the list.

A – Hacker using the IP 
address of host C (invalid 
IP address). 
 
C – Client (non-existent 
or unreachable). 
 
S – Attack target host. 

A C S 

SYN 

SYN 

SYN 
 

SYN/ACK 

SYN/ACK 

SYN/ACK 

Fig. 16. The SYN Flood attack.

The trace to detect this attack is illustrated in figure 17. In this
case the detection will be done by observing many unsuccessful
occurrences of the trace (see third row of table II). Therefore,
the management task defines, for a given time interval, the num-
ber of unsuccessful traces required for the mid-level manager to
trigger the execution of the associated action. If the connection
attempts origin from the same IP address the action could be to
contact the action agent located in the host where the firewall re-
sides so that it runs a small script to perform its reconfiguration
in order to block TCP accesses from the host that generated the
attacks.

TCP SYN/ACK 

idle 2 

TCP ACK 

 

Fig. 17. Trace to detect the SYN Flood attack.

V. CONCLUSIONS

This work presented a distributed architecture for the man-
agement of enterprise applications, high-layer protocols and net-
work services based on the usage of programmable agents. Mo-
tivated by the growing need companies have to monitor their
high-layer protocols and, particularly, their critical applications,
the work proposes a flexible architecture able to follow the fast
dissemination of protocols and applications on networks (that
need to be managed). The architecture may be applied either in
corporate networks or in application service providers.

The most important contribution of the architecture is the
granularity of the monitoring. The observation of network traf-
fic on a transaction basis makes the understanding of protocol
and networked application behaviors possible. The language
proposed to specify protocol traces is simple, but the network
manager has to know the format of the packets exchanged by
the application or protocol to be managed. The availability of
graphical tools with high level interfaces such as the prototype
shown in figure 11 makes this task easier.

Another significant contribution of the architecture is the pos-
sibility to do more than just monitoring. Management tasks pro-
vide the manager with mechanisms to monitor the occurrence of
protocol traces and to dispatch management scripts executed by
programmable action agents. These mechanisms contribute to
management automation in some scenarios.

As described by Strauß [12], “distributed management in gen-
eral [13], [14] and the Script MIB specifically are expected
to bring various advantages over the centralized concept suit-
ed for the raising demands in network management. A com-
monly mentioned advantage is the increased scalability due to
the delegation of management tasks from the centralized net-
work management station to mid-level managers. This implies
that CPU and network load is also delegated to the subnets to
which the mid-level managers belong. Another major advantage
is concerned with the robustness of management tasks. While



centralized management systems require a reliable network, the
distributed approach allows to delegate some sensible manager
functions next to the observed agents. Hence these functions
may become independent from less reliable WAN links, for ex-
ample”.

The architecture requires more work to be controlled than a
single centralized management system. The management of its
components becomes more complicated. It is necessary to dis-
tribute and update scripts, control running scripts, gather and
correlate intermediate and final results. We believe that such
operations, as well as the specification of traces, can be sim-
plified by adding an easy-to-use interface to the management
application. Currently, our research group is working on the im-
provement of the prototype. After that, a larger scale validation
will be done.

REFERENCES

[1] L. L. Ho, C. J. Macey, and R. Hiller, “A Distributed and Reliable Platform
for Adaptive Anomaly Detection in IP Networks”, in Proc. 10th IFIP/IEEE
International Workshop on Distributed Systems: Operations and Manage-
ment, Zurich, October 1999, pp. 33–46.

[2] C. S. Hood and C. Ji, “Intelligent Agents for Proactive Fault Detection”,
IEEE Internet Computing, vol. 2, no. 2, pp. 65–72, March/April 1998.

[3] G. Malan and F. Jahanian, “An Extensible Probe Architecture for Net-
work Protocol Performance Measurement”, in Proc. SIGCOMM, Vancouver,
September 1998.

[4] C. Cook et al., “An Introduction to Tivoli Enterprise”, First edition.
USA: International Technical Support Organization, 1999. Available at
http://www.redbooks.ibm.com.

[5] S. Waldbusser, “Remote Network Monitoring Management Information
Base Version 2 using SMIv2”. Request for Comments 2021, January 1997.

[6] L. P. Gaspary and L. R. Tarouco, “Characterization and Measurements of
Enterprise Network Traffic with RMON2”, in Proc. 10th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations and Management,
Zurich, October 1999, pp. 229–242.

[7] L. P. Gaspary and L. R. Tarouco, “Managing Users, Applications and Re-
sources with RMON2”, in Proc. Global Telecommunications Conference,
Symposium on Enterprise Applications and Services, Rio de Janeiro, De-
cember 1999, pp. 1997–2001.

[8] S. Waldbusser, “Application Performance Measurement MIB”, Internet
Draft, November 2000.

[9] J. Larmouth, ASN.1 Complete, Open Systems Solutions, 1999.
[10] J. Schönwälder, J. Quittek and C. Kappler, “Building Distributed Man-

agement Applications with the IETF Script MIB”. IEEE Journal on Selected
Areas in Communications, 18(5):702–714, 2000.

[11] D. Levi and J. Schönwälder, “Definitions of Managed Objects for the Del-
egation of Management Scripts”, Internet Draft, Nortel Networks, TU Braun-
schweig, July 2000.

[12] F. Strauß, “Advantages and Disadvantages of the Script MIB
Infrastructure”, Project Report, October 2000. Available at
http://www.ibr.cs.tu-bs.de/projects/jasmin/.

[13] Y. Yemini, G. Goldszmidt, and S. Yemini, “Network Management by Del-
egation”, in Proc. International Symposium on Integrated Network Manage-
ment, 1991, pp. 95–107.

[14] J. Schönwälder, “Network Management by Delegation – From Research
Prototypes Towards Standards”. Computer Networks and ISDN Systems,
29(15):1843– 1852, November 1997.


