
Distributed Management of High-layer Protocols

and Network Services Through a Programmable

Agent-based Architecture

Luciano Paschoal Gaspary, Luis Felipe Balbinot, Roberto Storch, Fabricio
Wendt, and Liane Rockenbach Tarouco

Federal University of Rio Grande do Sul, Institute of Informatics,
Av. Bento Gonçalves, 9500 – Agronomia – CEP 91591-970 – Porto Alegre, Brazil,

paschoal@inf.ufrgs.br,
WWW home page: http://www.inf.ufrgs.br/~paschoal

Abstract. This paper proposes an architecture for distributed man-
agement of upper layer protocols and network services called Trace.
Based on the IETF Script MIB, the architecture provides mechanisms
for the delegation of management tasks to mid-level managers, which
interact with monitoring and action agents to have them executed. The
paper introduces PTSL (Protocol Trace Specification Language), a graph-
ical/textual language created to allow network managers to specify proto-
col traces. The specifications are used by mid-level managers to program
the monitoring agents. Once programmed, these agents start to moni-
tor the occurrence of the traces. The information obtained is analyzed by
the mid-level managers, which may ask action agents for the execution of
procedures (Perl scripts), making the automation of several management
tasks possible.

1 Introduction

The use of computer networks to support a growing number of businesses and
critical applications has stimulated the search for new management solutions that
maintain not only the physical infrastructure, but also the protocols and services
that flow over it. The popularization of electronic commerce (e-commerce) and
the increasing use of this business modality by companies, for instance, imply
using the network to exchange critical data from the organization and from its
customers. Protocols and services that support these applications are critical
and, therefore, need to be carefully monitored and managed.

Not only critical applications require special attention. New protocols are
frequently released to the market to support an increasing set of specific func-
tionalities. These protocols are quickly adopted by network users. As a result
of this fast proliferation, weakly-tested and even faulty protocols are dissemi-
nated to the network consuming community. In several cases these anomalies, as
well as the miscalculated use of resources, are the cause of network performance
degradation and end up unnoticed.

We believe that most of the research carried on so far try to provide mecha-
nisms to guarantee higher availability and performance for networks (e.g. Hood
and Ji work on proactive fault detection [2]). While solutions to manage physical
network infrastructure are established and tested, it is still needed to investigate
ways to provide effective management of applications and protocols.

Existing management tools are not completely prepared to allow the moni-
toring of these new applications and protocols. Most of the tools only allow the
monitoring of a closed set of them. The ability to observe new ones depends on
the firmware update of the monitoring hardware (e.g. RMON2 probes [3]) or
on the programming in low level languages as the extensible probe architecture
proposed by Malan and Jahanian [4]. Due to the complexity of the task, most
network managers neglect this possibility.

In some approaches it is possible to recognize and count packet flows spec-
ified by simple filtering rules (e.g. tcpdump-like filters used by ntop [5]) or by
descriptive languages such as SRL [6], used by NeTraMet [7]. However, these fil-
tering languages lack constructors that allow a rule to be defined as a sequence of
packets each with specific filtering options, making it impossible to accomplish
time-based or correlated analysis of flows.

Other solutions such as Tivoli Enterprise [8] are intrusive, since they require
that developers insert specific monitoring procedure calls while developing ap-
plications. This approach is only suitable for applications developed in-house. It
cannot be used to manage proprietary protocols (e.g. web browsers and servers
and e-mail client and servers). Besides that, one must invest on personnel train-
ing to use the monitoring APIs.

Regarding the type of information gathered by monitoring engines, some
approaches such as the IETF RMON2 MIB (Remote Network Monitoring Man-
agement Information Base version 2) store, for a pre-defined set of high-layer
protocols supported by the probe, the number of packets sent/received by a
host or exchanged by host pairs. Gaspary et al. describe in [9, 10] the advan-
tages and limitations of the RMON2 MIB. One of the RMON2 weaknesses is
that it does not store any information related to performance, but it has been
discussed by the Remote Network Monitoring group at the IETF [11].

Finally, we should point out that many management tools are limited to
monitoring [5, 7] and the network manager has to take actions manually when
unexpected behaviors from these protocols are observed.

In this paper we present Trace, an architecture for distributed management
of enterprise networked applications, high-layer protocols and network services
[12] based on the IETF Script MIB [13]. Through a graphical and textual lan-
guage based on finite state machines, the network manager defines protocol
traces to be observed. These specifications are readily received by one or more
programmable agents that immediately start to check whether a defined trace
occurs or not. The observation of these traces in the network traffic triggers
actions, which are also determined by the network manager.

The paper is organized as follows: section 2 describes the language to specify
protocol traces. In section 3 the architecture is presented. Section 4 illustrates

how to accomplish fault management using the architecture. In section 5 we
present a summary and concluding remarks.

2 Protocol Trace Representation Using PTSL

In this section we propose PTSL (Protocol Trace Specification Language), a
graphical and textual language for the representation of high-layer protocol
traces. The languages are not equal. The textual one makes the complete rep-
resentation of a trace possible, including the specification of both the state ma-
chine and the events that trigger the transitions. On the other hand, by using
the graphical language one can graphically represent the state machine but only
label the events that trigger the transitions.

2.1 Organization of a Specification

The textual specification of a trace begins with the keyword Trace and ends
with EndTrace. Initially, the manager may describe some optional items to the
specification (see figure 1, lines 2–7). Next, it is broken down into three sections:
MessagesSection (lines 8–10), GroupsSection (lines 11–13) and StatesSection
(lines 14–16), where messages to be observed, grouping and state machines that
describe the trace are respectively specified.

�

�
�
�
�
�
�

�
�
�
	

���
�
�
�
�

���
�
�
�
�

�
�

�� ������� ��������������� ������� �!����������� "

#$�%� ��& '%(*) ��+ 	
,�������� & -�. & '*(%) � ���!�����������0/0& . 1 ��	�	 � ����-�'%(���� +
23��4%) 5�3$6�7 ��	�	 7�892
63'%� .) ��	
8:/0(��%�)�;�����& �%(�'<6=������1�'��%��>?����-��*� 4
;�����.3@�-�A���. �=) B3� & 7 ��� ����- ��	�	�	C���) ���) 	�� >9D9

D9��� ����E������$����. & '*(

FG�(�A*D9��������E�����������. & '%(

>9� '*��-����$����. & '%(

FG�(�A�>9� '%��-���������. & '*(

��. ��. �����$����. & '%(
FG�(�A��$. ��. ����������. & '*(

G�(�A�$� �����

Fig. 1. Schematic representation of a textual specification.

If the trace to be monitored belongs to a single application-layer protocol then
the network manager may specify the TCP or UDP port number using the Port
parameter (line 5). It will simplify packet classification during the monitoring
phase.

2.2 State Machines

The trace of a protocol is defined through a finite state machine. The network
manager may define a model to monitor just a part of or the whole protocol, or
interactions that comprehend more than one protocol. Figure 2 shows two trace
examples. In the first example (a), the manager is interested in monitoring the
successful accesses to a WWW server. The trace shown in (b) does not describe a
single protocol; it is rather made up of a name resolution request (DNS protocol),
followed by an ICMP Port Unreachable message. This trace occurs when the
host where the service resides is on, but the named daemon is not running.

��� �����	�
������������� ���������������������� � ��� ��� ���������
!�������� � "�# � �������$�������������&%'� # (')� � *� ���"�������+�
,+��-.��/��.��021�)� � �1�3&,
0+��� # �4�
35%'����� ��6������ ����*0+�����(�������78���"���� -
6�����#+9�"�:���# �+��;.� � 1�)�<=
2��"=)� � � >��?.� ��?+� �<=7&@&�

)

7&A+�

/��+�20.B ��� �8)� �

� :�� �
? � �

��� �����	� !DC�
������ E�� ��*F&����� # ��� � �G��

� :�� �

� ��� ��� ���������
!�������� � "�# � ������H8(����I&� �+!DC�
������ E�� ���*� �=� ������� �G+�
,+��-.��!DC�
�1�����F&��:
0+��� # �
35%'����� � 6������ ����*0+�����(�������78���"���� -
6�����#+9�"�:���# �+���2����1+��?	JK��G=)� � � =).��� ?+��� �)=7	@'�

)

!DC�
L� ��M������#

N H8@=0�F&��������G��*0+��� #
95��� ������(��O�� �

P ��Q

P O�Q

Fig. 2. Graphical representation of a trace. (a) Successful WWW request. (b) DNS
request not replied because named daemon is not executing.

As one can see states are represented by circles. The initial state has the label
idle associated to it. The final state is represented by two concentric circles.
In both examples the initial and final states are the same (idle). Transitions
are represented by unidirectional arrows. A continuous arrow indicates that the
transition is triggered by the client host, whereas a dotted arrow denotes that
it is caused by the server host. The text associated to a transition only labels
the event (specified as a message or grouping in the textual language) that will
trigger it. It means that the whole specification of a transition only can be done
using the textual language. The graphical representation of the state machines
shown in figure 2 can be mapped to the textual specification presented in figure
3.

2.3 Transitions

In addition to making a high-level representation of traces, it is necessary to
describe what causes the change of states. Before describing the adopted so-

 � ���

��� � �	�
�� ��� �� � � �

�� ��� � � � � �������	��� � �
�� ��� �������
�� ��� � � �

�� ��� ��� ��� ��!	" #�$ # ��%�% ����� � �
�� ��� � � � �����
�� ��� ��

� � � �&�
�� ��� � � � �

�� ��� � � � � ')(
+* �,	- �.�� ����� � �
�� ��� �����/�
�� ��� � � �

�� ��� ��� 0 1�2�!43 �.�.���5� �	��� � �
�� ��� � � � ���/�
�� ��� ��

� 6��

Fig. 3. Textual representation of state machines.

lution, it is important to highlight that high-layer protocols are specified in
many different ways. Larmouth classifies them as character or binary-based [14].
Character-based protocols are defined as a set of text lines coded in ASCII (e.g.
HTTP and SMTP). Binary protocols, on the other hand, are defined as strings
of octets or bits (e.g. TCP).

Considering the differences between both protocol types, we propose state
transitions to be represented by a positional approach. Taking the example shown
in figure 2a, we present (see figure 4a) how to represent the transition HTTP/1.1

200.

 7
89
:;<
=

>�?�@�@/A�B�?�C D�E�E�F	G 7 H
7 8�I�I�J>�?�@�@/A�B�?�E�K�L�? M/@�?	N O�?	N>�?�@�@/A�B�?�E�P Q�?�R&S�T M ;�I�I�IG G	U�V V @�?�T E�K�L�?XW�Y/Z�A�L�@�S�[A�T P R	Y�\�P ?&[]&^_S�Q�`�?&N&a�?	N `Xb�?�@/Z�N P L�T P R	Y\ P ?	[]�c)R	S�Y�T ?	N�W T d�?&N Y�?�T G e F	G E c�F I D�E E�F�G 7 H

7 C F�N R�T R�Z�R&[fO�?&N @�P R&Y J\ P ?	[]�c)R	S�Y�T ?	N�W T d�?&N Y�?�T G e F	G E c�F 7 8�I�I C g�S�Z/Z�?�@/@�V S�[hA�Z�Z�?�@�@ JW�Y/]	>�?�@/@�A�B�?

>�?�@�@�A�B�?�C b)^igjN ?�k	S/?�@�T J>�?�@�@�A�B�?�E	K�L�? M�Z�[P ?	Y TG G�U�V V @�?�T E	K�L�?XW�Y�Z/A�L�@�S�[A�T P R&Y�\ P N @�T l�P T ^)S�Q�`�?&N U�V l�P T @ma�?	N `Xb�?�@�Z�N P L�T P R	Yl�P T c)R	S�Y�T ?	N�W T d�?&N Y�?�T G e F�G n)b)F 7 < 7�7 C \�P ?	[]�o�p Jl�P T c)R	S�Y�T ?	N�W T d�?&N Y�?�T G e F�G n)b)F 7 =q:�I�I�I�I C \ P ?	[]�U�F c)U�b)W JW�Y�]&>�?�@�@/A�B�?

 r A�s r ` s

Fig. 4. Representation of (a) Character-based and (b) Binary protocol fields.

As the transition is expected to be triggered by the server host, one must set
the MessageType field to server (line 2). Since both protocol fields (HTTP/1.1
and 200) belong to a character-based protocol, the search for their positions
within the packets is made by fields (FieldCounter, lines 5–6). In this example,
HTTP/1.1 is the first string that appears on the message and therefore its offset
is 0 (third parameter in line 5). The second string to appear is 200 and its offset
is 1 (line 6). For each protocol field defined in a message it is also necessary to
inform where to look for it (encapsulation Ethernet/IP/TCP, lines 5–6).

When the transition is caused by a binary protocol, the offset is presented
in bits (BitCounter). In this case, it is necessary to inform where the field
starts (FirstBit) and the number of bits to be observed from this offset on
(NumberOfBits). A standard DNS request can be recognized by two fields: QR
(when set to 1 indicates a request to the server) and OPCODE (when set to 0

represents a standard query). Field QR is 16 bits away from the beginning of
the header and its size is 1 bit. Field OPCODE starts in the seventeenth bit and

occupies 4 bits. In figure 4b the textual representation of a standard DNS request
is shown.

It is possible to group one or more messages into one single transition. For
example, in figure 2a it would be possible to replace the HTTP/1.1 200 with
the grouping HTTP/1.1 2XX. In this case the trace would monitor the rate of all
successful WWW operations generated by client requests (2XX) instead of only
observing the occurrence of WWW accesses whose return code is 200 (successful
request). Figure 5 shows the representation of this grouping (lines 16–18).

 �

�
�
�
�
�
�
�
��
	�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
	
�
�

�
�
�
�
���
�
�
�
�
�
�
�
�

��
�������
��������� � ���

�
��
�������
�� "!#!%$�&

�
'
�
��	
	
(

��
�������
�!�)
*�#+��� , -��,
.#� �/ 0
12��3���� �,#45� 6��, ���� & 7 $#& !518$ 	 9!#!%$�&

�
'
�
� $�, ��� ������/;:%�, ��� ��� (

.#� �/ 0
12��3���� �,#45� 6��, ���� & 7 $#& !518$
�
�
	�	 � �93�����
����< 3�/�,
=�3�
��� (

4���0���������
��
��
�������
�� "!#!%$�&

�
'
�
��	
�
(

��
�������
�!�)
*�#+����, -��,
.#� �/ 0
12��3���� �,#45� 6��, ���� & 7 $#& !518$ 	 9!#!%$�&

�
'
�
� $�, ��� ������/;:%�, ��� ��� (

.#� �/ 0
12��3���� �,#45� 6��, ���� & 7 $�& !518$
�
�
	�� � >9�= 3�������������*�� �0�?�3��5������*�, ����
�����0 (

4���0���������
��

�
4���0���������
������%
��� � ���
@�, ��3�*��������� � ���
@�, ��3�*�� 9!#!%$�&

�
'
�
�
A�A%(

��
�������
���+�� "!#!%$�&
�
'
�
��	�	�(B � "!#!%$�&

�
'
�
��	
�
(B �4���0
@C, ��3�*

4���0
@C, ��3�*��������� � ���
��� ��� ��������� � ���
.#� ����/ �%� ��� 5+
� 0�/
��� ��� D� 0�/
� @�45! (@8�
� �
�%� ��� �
4���0
�%� ��� � 0�/
��� ��� �
� 9!5!�$#&

�
'
�
��A%A�(@8��� ����� ��� D� 0�/

4���0
�%� ��� �
4���0
�%� ��� ��������� � ���

Fig. 5. Representation of message grouping.

In some cases the network manager may be interested in observing the oc-
currence of a certain string within the data field of a certain protocol, no matter
where it is located. To do that, in the definition of such a message one must
use NoOffset as the OffsetType parameter. This feature is interesting, for in-
stance, to observe the attempt of an intrusion. The example presented in figure
6 defines that every TCP packet must be tested for the occurrence of the string
/etc/passwd (line 4).

We have also created a mechanism to allow the determination of a timeout
to a transition to occur. To do that one must associate a timeout value (in

�
�
�
�
�

���	�
���		��� � �	� �
� �	�	�
�
�����
���	�
���		��������������� � �! ��
� ��"�# # �
�	� �������%$& ��
�	�	�	'�� ��� � (! *)&�!+ ,
-.("�# # ������$�� /
�!+ ��	� � 0 1�� ��2�13� �	� �
� �	�����
�4�
$5 ��!��� �
���	��

Fig. 6. Non-specified offset message field.

milliseconds) to the message definition (see figure 4a, line 3). When not defined,
a default value is used by the network monitor.

3 The Trace Architecture

The architecture we propose is an extension of the existing distributed man-
agement infrastructure standardized by the IETF [15] with high-layer protocol
and network service management capabilities. Figure 7 shows the main com-
ponents of the architecture. It is composed of management stations, mid-level
managers, programmable monitoring agents and programmable action agents.
The following sub-sections describe the components of the architecture and their
interactions with each other.

6�7 8 9 : ;�<	;!:=6�>!?!>�@�;=A

B.CED�F
G	H�I!J�K

L MNMPO
Q RST O
U VT

W XY RS
ZSR
Y RS [�\] ^ _ K [` a b c b dPePf g h d ikj h lB \] ^ _ KD%m n

6�o5?�7 p o&A 7 ?=@3q4@�;=?=p

BrCED�F
G	H�I!J�K

[�\] ^ _ K [` ekikskt lB \] ^ _ KD%m n

uED�v�C.w
D%m n

q4x�p 7 o&?yq4@�;!?=p

B.CED�F
G	H	I=J�K

L MNM O
Q RST O
U VT

W XY RS
ZSR
Y RS [�\] ^ _ K [` a b c b d ekf g h d ikj h lB \] ^ _ KD%m n

6�>=?!>�@�;!z{;!?=p�|�p >�p 7 o5?

}] ~��4[I] [�\] ^ _ K [� F&�EF��

] I _	~	[^ K ~!] �` e iksPt d a b c b dePf g h d ikj h l
� G�K G } G [I

Q�
Q K] G _J ~ K ^ � ^ I] QU��

��X
W Y �S

� I }
[I] � I]

� � �
� �P�� �P�

� �P�

� �P�

� �P�

� �P�

� �P�

� �P�

� � �P�

� � �P�
� � �P�

� � �P�
� � �k�

� � �P� � � �P�

� � �k�

� �k�P�

� �	� �

� �P�P�

� G] H	I�KD%m n
C ~ K ^ � �D%m n

� � �P� � �P� �

Fig. 7. Components of the architecture.

3.1 Management Station

The most important activities accomplished by the network manager from a
management station are (a) registration of mid-level managers, monitoring and

action agents, (b) specification of protocol traces and actions, (c) specification,
delegation, observation and interruption of management tasks and (d) receipt
and visualization of traps.

As the whole architecture is based on the Script MIB, protocol traces, ac-
tions and management tasks are scripts executed by monitoring agents, action
agents and mid-level managers, respectively. Protocol traces are specified by the
network manager using the PTSL language. Actions are scripts developed using
Java or any scripting language such as Tcl and Perl. Management tasks may
also be implemented using any language and coordinate monitoring and action
agents. Such a script programs the monitoring agents, observes the occurrence of
the trace and activates action agents when a condition associated to a protocol
trace holds. The same script may also report events to the management station
raising traps.

At the management station the network manager can specify traces using a
graphical tool (see an example of such a tool in figure 8) or, if he knows the
language, by editing a text file. The same occurs with actions and management
tasks. The specification of protocol traces, actions and management tasks are
stored in the database (figure 7, see flows (1, 2, 3) in diagram). When a man-
agement task is about to be delegated, they are mapped to files and stored in
the repository (4).

Fig. 8. Prototype of the tool for trace specification.

Communication between the management station and the mid-level managers
takes place using the SNMP protocol (Script MIB) (5, 6). The manager can
delegate a management task to a mid-level manager as well as abort it at any
time. Intermediate and final results of the execution of a management task are
stored directly at the Script MIB of the mid-level manager responsible for the
task and can be retrieved by the management station using the SNMP protocol
(5, 6).

The manager may receive traps through an element called trap notifier (21).
When received, all traps are stored in a database (22). The traps are permanently
retrieved by a script (3) that updates the manager’s web browser (2, 1) using
the push technology.

3.2 Mid-level Manager

Mid-level managers execute and monitor management tasks delegated by the
management station and report the most important events to it. The number of
mid-level managers is determined by the network manager and depends on the
size and complexity of the infrastructure to be managed.

The process of configuring mid-level managers is the following: the network
manager defines a management task and stores it at the repository (1, 2, 3, 4).
Next, the activation of the task must be scheduled using the Script MIB (5, 6).
In order to do that, the mid-level manager has to be informed about the location
of the task (script). When activated, the task is retrieved from the repository
using the HTTP protocol (7) and executed (8).

The script executed by the mid-level manager installs the protocol trace (9,
12) and the action script (17, 18), requests the monitoring agent to start ob-
serving the occurrence of the protocol trace just installed (9, 12), polls RMON2
variables periodically to monitor the occurrence of the trace (9, 16) and, depend-
ing on what is observed, dispatches the execution of the action script (17, 18)
or raises a trap to the manager (21). The script communicates with the agents
using the SNMP protocol.

The same script may also subscribe at monitoring and action agents to the
traps it wants to receive. The Target MIB is used to identify the management
task (IP address and UDP port) (9, 10). Using the Notification MIB the mid-level
manager indicates (through filters) which traps should be sent to the manage-
ment task, whose location was identified at the Target MIB (9, 11) [16]. When
the script receives a trap, it may dispatch the execution of an action (17, 18) or
correlate it with previously received traps. The result of these operations may
be informed to the management station (21).

3.3 Monitoring Agent

The monitoring agents are responsible for observing the traffic on the network
segment where they are installed. They are configured by mid-level managers and
are called programmable because they are able to monitor protocol traces dele-
gated dynamically by the network manager. This flexibility is obtained through
the language presented in section 2. When the mid-level manager sets the moni-
toring agent up (9, 12), the former defines which protocol trace it should retrieve
(it is indicated within the script that implements the task). Once retrieved (13),
the trace file is loaded by the monitoring engine and the observation starts (14).

Whenever the occurrence of the trace is observed between any pair of hosts,
information is stored within an RMON2-like MIB (15). This MIB is different
from the standard because the protocolDir group is writable in our approach.

Therefore the probe stores statistics according to the protocol traces of interest
to the network manager. Additionally, the granularity of the monitoring becomes
higher. Instead of storing overall statistics on traffic generated by a given pro-
tocol, statistics are generated according to the occurrence of specified traces or
transactions.

The alMatrix group from RMON2 MIB stores statistics on the trace when
the latter is observed between every pair of hosts. Table 1 shows the con-
tents of the alMatrixSD table. It gathers the observed number of packets and
octets exchanged between every pair of hosts (client/server) using the protocol
traces being monitored by the probe. In the example, two traces were observed:
Successful WWW access and DNS service monitoring (previously shown in
figure 2a and b).

Table 1. Information obtained by referring to the alMatrixSD table.

Source Address Destination Address Protocol Packets Octets

17.16.10.1 17.16.10.2 Successful WWW access 254 120.212
17.16.10.6 20.24.20.2 Successful WWW access 20 10.543
17.16.10.1 17.16.10.33 DNS service monitoring 4 4.350
17.16.10.32 17.16.10.33 DNS service monitoring 8 7.300

The disadvantage of using RMON2 MIB is that it does not have objects
capable of storing information related to performance. For this reason, our group
is currently considering the possibility of using, in addition to that, an RMON2
extension, such as Application Performance Measurement MIB [11]. Table 2
shows the kind of information stored by this MIB. The first line shows that
the trace Successful WWW access has been observed 127 times between hosts
17.16.10.12 and 17.16.10.2. Additionally, the mean response time was 6 seconds.

Table 2. MIB with information on performance.

Client Server Protocol Success. Unsuccess. Responsiv.

17.16.10.12 17.16.10.2 Successful WWW access 127 232 6 sec.
17.16.10.12 20.24.20.2 Successful WWW access 232 112 17 sec.
17.16.10.1 17.16.10.33 DNS service monitoring 2 0 3 sec.

3.4 Action Agent

Action agents reside in hosts where network services are executed. Their function
is to perform a given operation on these services. Let us take as example the

DNS service. Figure 2b shows a trace that enables to detect when the named

daemon is not in execution. There may be a management task, delegated to the
mid-level manager, that monitors the occurrence of this trace. If that is the case,
the action to be taken is to contact the action agent (see flow (17) in figure 7),
which is located in the host where the DNS service is installed, and request the
execution of a script to restart the daemon (18, 19, 20) (see the example of such
a script developed in Perl in figure 9). The result obtained by the action agent is
accessible to the mid-level manager (17, 18), which may send it to the manager
for notification purposes (21).

��� � ����� � 	�
 �� ����� �

����� ��
 ���

�������
 � �
 ��� ������ �!��"������# � � �$
 ���"%���!���
 ��&('

 �() * �$+ � ,"#�� � � ���-� �# � ���(' ��
 ��+ .�/
� ��
 ��0$1 � 	�
 �-� !�#"��� ,"#�� � � ���� ��# � ���(' ��
 ��1 �

2

�43 �(��# � ���$
 �5� �"����
 ��&�6�� �"��� #�� �(
 �(���"
 ��&�#$7989:;��
 &��#�� 6" �� ����� <�
 ��
�5
 ����� #����
 #�� ��� ������ �!��"����#�&�#�
 ��'

 �() �����
 ����� � ��
 �".�/
���
 ��(+ =>����� #�� �
 ��&$�# � ���$) ��������
 ��&$7989:;��
 &���#�� . ' ' ' ? ��+ �
1 � 	�
 �� @�
 � � * 7989: � ��
 ��1 �

2(��� ���/
���
 ��(+ A�� #�� �
 �&$��# � �"�$) <B#"�5� ��(� �"����
 ��&�. ' ' ' ? ��+ �
1 � ���"� � ��	�
 �-� �# � ����CD1 �

2

��E(�"���(
 ��� ������� "!�������
 ���"%"�"!����
 �&('

 �() * �$+ � ,"#�� � � ���-� �# � ���(' ��
 ��+ .�/
� ��
 ��0$1 � 	�
 �-� !�#"��� ,"#�� � � ���� ��# � ���(' ��
 ��1 �
���
 ��(+ E���$��# � �"����#�� � ���
 �����#����$� ���"��
 �&�#���:>3 F � ��
 � ? ��+ �

2(��� ���/
���
 ��(+ E���$��# � �"����#�� � ���!� ��"� �$� ���	"����� #�� � �"�(� ? �"+ �

2

Fig. 9. Perl script to restart the named daemon.

4 Fault Management of Network Services

Fault management is an important target of the proposed architecture. An exam-
ple of fault management concerning to high-layer protocols and network services
is checking the availability of a network service and restart it if it is not running.
Figure 10 shows how this can be achieved using the architecture. In this case
the task delegated to the mid-level manager is supposed to monitor the DNS
service.

This monitoring is performed by sniffing the packets seen in the segment. In
a situation where the daemon responsible for the DNS service is not running,
the agent will observe a DNS request and some time later a Port Unreachable

ICMP message from the serving host. In this case the mid-level manager should
contact an action agent, which resides in the DNS serving host and request the

�����������
	������� �����

�������

����� � ���
���������

���������

�������

��� �����

� ��� �

�
	��!� ��"$#������

% &('*)�������������
)+��� �-,.��� ������/���0�� �

 �������

1 2 3�4�576 879;:�<>=7? 6 <>@ ? =7A;B7A>5>=C6
1 D73�E+? F 97BC6 G7H;:�<>=7? 6 <>@ ? =7A;<7I�6 HC5
6 @ BCG 5
1 J73�K�<>=7? 6 <>@ ? =7A�L <7<>9

1 M73 4$6 BC6 87F�? =CI <

'������ � �$� � ���
���������

1 2 3�4$576 879;:�<>=7? 6 <>@ ? =7A(B7A>5>=C6
1 N73�4$576 879
BCG 6 ? <>=.BCA>5>=C6
1 D73�E-? F 97BC6 GCH(:�<>=7? 6 <>@ ? =7A.<7I�6 HC5
6 @ BCG 5
1 J73$K�<>=7? 6 <>@ ? =7A�L <7<>9
O
P Q B7F�6 HC5
6 @ BCG 5;R E�S$4TF 5>@ U ? G 5:�<>=7? 6 <>@ ? =7A>V�<>W7F 5>@ U 57X�Y
P Z 5>F7[71 \73�E+? F 97BC6 GCH.BCG 6 ? <>=
F GC@ ? 9C61 M73�]$@ B79
6 <.6 HC5�:�B7=7B7A>5�:�5>=C6

F 6 BC6 ? <>=
^

'_�$���������������$� ����`

'_�$���������������$��� ��� � ���

'_�$���������������
��a�a�� � ����� � ���

E+5�L 5>A�BC6 ? <>=
<7I
:�B7=7B7A>5�:�5>=C6>6 B7F b

1 N73�4�576 879
BCG 6 ? <>=.B7A>5>=C6

1 \73�E-? F 97BC6 GCH.BCG 6 ? <>=
F GC@ ? 9C6

'*� � c � �������
'������������

Fig. 10. Execution steps of a management task.

execution of a script to restart the daemon (such as the one illustrated in figure
9). The textual specification of the trace DNS service monitoring is shown in
figure 11.

The architecture was designed to take into account all the standard functional
areas of management: fault, configuration, accounting, performance and security
(FCAPS). Our research group has explored in [12] its characteristics to validate
the usefulness of the architecture for the management of high-layer protocols
and network services.

5 Conclusions

This work presented a distributed architecture for the management of high-
layer protocols and network services based on programmable agents. Motivated
by the growing need companies have to monitor high-layer protocols and their
critical applications, the work proposes a flexible architecture able to follow
the fast dissemination of protocols and networked applications (that need to
be managed). The architecture may be used either in corporate networks or in
application service providers.

The most important contribution of the architecture is the granularity of the
monitoring. The observation of network traffic on a transaction basis makes the
understanding of protocol and networked application behaviors possible. The
language proposed to specify protocol traces is simple, but the network manager
has to know the format of the packets exchanged by the application or protocol
to be managed.

Another significant contribution of the architecture is the possibility to do
more than just monitoring. Management tasks provide the manager with mecha-

��� �����	�
��������� ��� ����������� � ��� � �����

� ��� ��� ����!�"�# $

%������� � &�� � ����!�� � �����	� �	'���� �����)(+*����	��������'�� �	�����,� -������ ���
./��0�!���������'�1�2 ��-�3 � 1�
4�%5����� ��� ���
6/��� � !
74(+����� !�8�-���� ������6,������*�����3:9;����&���� 0
8������/<�&�'���� �,!�� -���1,"=$?>�-��	@�$�$�$A"=B,! C�$,! B�D	9�E��

E��������������������� � ���

E������������	�
4�%GF%��H�-������ �
I I� � �	����'���� ��2 � ��-�� � J�K #
L���'�E������������

E������������	� M N;E	65E��������������
E���������������0�&��,!������ �����
I I�7+2 2 ����� ��0�&���L�������&���-�3 ��� � ���	O,� � ��� P�� �/��-���K���� 7;2 P � � �+�%��� K�
%������� � &�� � ���
P�� � N���-���� ���,L/� *���� ����� I M 6A$	D	$�$�$�$�$�$,"�" � �/0�&��	2 � ��3 '�Q�$�$�$�$�$�$/"�":R��
P�� � N���-���� ���,L/� *���� ����� I M 6AD	D	$�$�$�$�$�$,"�";� N���'��	2 � ��3 '�Q�$�$�$�$�$�$,"�" R��
L���'�E������������

L���'�E��������������� ����� � ���

�� ��� ���������� � ���

I I� ���	����'���� ��2 � ��-�� �	C�K,#

L���'� � ��� ���������� � ���

L���'�� � �����

Fig. 11. Trace to monitor the DNS service.

nisms to monitor the occurrence of protocol traces and to dispatch management
scripts executed by programmable action agents. These mechanisms contribute
to management automation in some scenarios.

As described by Strauß[17], “distributed management in general [18] and
the Script MIB specifically are expected to bring various advantages over the
centralized concept suited for the raising demands in network management. A
commonly mentioned advantage is the increased scalability due to the delega-
tion of management tasks from the centralized network management station to
mid-level managers. This implies that CPU and network load is also delegated
to the subnets to which the mid-level managers belong. Another major advan-
tage is concerned with the robustness of management tasks. While centralized
management systems require a reliable network, the distributed approach al-
lows to delegate some sensible manager functions next to the observed agents.
Hence these functions may become independent from less reliable WAN links,
for example”.

The architecture requires more work to be controlled than a single central-
ized management system. The management of its components becomes more
complicated. It is necessary to distribute and update scripts, control running
scripts, gather and correlate intermediate and final results. We believe that such
operations, as well as the specification of traces, can be simplified by adding
an easy-to-use interface to the management application. Currently, our research
group is working on the improvement of the prototype. After that, a larger scale
validation will be done.

References

1. L. L. Ho, C. J. Macey, and R. Hiller. “A Distributed and Reliable Platform for
Adaptive Anomaly Detection in IP Networks”. In Proc. 10th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management, Zurich, Oc-
tober 1999, pp. 33–46.

2. C. S. Hood and C. Ji. “Intelligent Agents for Proactive Fault Detection”. IEEE
Internet Computing, vol. 2, no. 2, pp. 65–72, March/April 1998.

3. S. Waldbusser. “Remote Network Monitoring Management Information Base Ver-
sion 2 using SMIv2”. Request for Comments 2021, January 1997.

4. G. Malan and F. Jahanian. “An Extensible Probe Architecture for Network Protocol
Performance Measurement”. In Proc. SIGCOMM, Vancouver, September 1998.

5. L. Deri and S. Suin. “Ntop: Beyond Ping and Traceroute”. In Proc. of the 10th
IFIP/IEEE Workshop on Distributed Systems: Operations and Management, Zurich,
October 1999, p. 271–283.

6. N. Brownlee. “SRL: A Language for Describing Traffic Flows and Specifying Actions
for Flow Groups”. Request for Comments 2723, October 1999.

7. NeTraMet. Available at http://www.auckland.ac.nz/net/Internet/rtfm/.
8. C. Cook et al. “An Introduction to Tivoli Enterprise”. First edition.
USA: International Technical Support Organization, 1999. Available at
http://www.redbooks.ibm.com.

9. L. P. Gaspary and L. R. Tarouco. “Characterization and Measurements of Enterprise
Network Traffic with RMON2”. In Proc. 10th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, Zurich, October 1999, pp. 229–
242.

10. L. P. Gaspary and L. R. Tarouco. “Managing Users, Applications and Resources
with RMON2”. In Proc. Global Telecommunications Conference, Symposium on En-
terprise Applications and Services, Rio de Janeiro, December 1999, pp. 1997–2001.

11. S. Waldbusser. “Application Performance Measurement MIB”. Internet Draft,
November 2000.

12. L. P. Gaspary, L. F. Balbinot, R. Storch, F. Wendt, and L. R. Tarouco. “Towards
a Programmable Agent-based Architecture for Enterprise Application and Service
Management”. In Proc. First IEEE/IEC Enterprise Networking Applications and
Services Conference, Atlanta, June 2001.

13. D. Levi and J. Schönwälder. “Definitions of Managed Objects for the Delegation
of Management Scripts”. Internet Draft, Nortel Networks, TU Braunschweig, July
2000.

14. J. Larmouth. ASN.1 Complete. Open Systems Solutions, 1999.
15. J. Schönwälder, J. Quittek, and C. Kappler. “Building Distributed Management
Applications with the IETF Script MIB”. IEEE Journal on Selected Areas in Com-
munications, vol. 18, no. 5, pp. 702–714, 2000.

16. D. Levi, P. Meyer, and B. Stewart. “SNMP Applications”. Request for Comments
2573, April 1999.

17. F. Strauß. “Advantages and Disadvantages of the Script MIB Infras-
tructure”. Project Report, October 2000. Available at http://www.ibr.cs.tu-
bs.de/projects/jasmin/.

18. J. Schönwälder. “Network Management by Delegation – From Research Prototypes
Towards Standards”. Computer Networks and ISDN Systems, vol. 29, no. 15, pp.
1843–1852, November 1997.

