
High-layer Protocol and Service Management Based on Passive

Network Traffic Monitoring: the Trace Management Platform

Luciano Gaspary123, Edgar Meneghetti3, Fabŕıcio Wendt2,

Lucio Braga3, Roberto Storch2, Liane Tarouco3

1Universidade do Vale do Rio dos Sinos, Centro de Ciências Exatas e Tecnológicas

Av. Unisinos 950 – CEP 93.022-000 – São Leopoldo, Brazil

2Universidade de Santa Cruz do Sul, Departamento de Informática

Av. Independência 2293 – CEP 96.815-900 – Santa Cruz do Sul, Brazil

3Universidade Federal do Rio Grande do Sul, Instituto de Informática

Av. Bento Gonçalves, 9500 – Agronomia – CEP 91.591-970 – Porto Alegre, Brazil

June 12, 2002

Abstract

A fast-growing number of high-layer protocols, ser-
vices and networked applications has been run over
computer networks and needs to be managed. A uni-
fied, decentralized framework should be used to scale
for the current large and complex computing environ-
ments. Besides, the management environment should
be quickly and easily adaptable to monitor dynamic
scenarios. This paper presents the Trace Manage-
ment Platform, an extension of the SNMP infras-
tructure based on the IETF Script MIB to support
integrated, distributed and flexible management of
high-layer protocols, services and networked applica-
tions.

1 Introduction

Computer networks currently experience a huge
growth not only in size but also in the number of
services offered, high-layer protocols and networked
applications that flow over it. Regarding manage-

ment of these network software, some of them are not
critical (e.g. ICQ and Napster) and need no special
care except characterization and accounting of traf-
fic generated by them (for network impact measure-
ment purposes). On the other side, some high-layer
protocols, services and networked applications (e.g.
DNS and HTTP server) support network-dependent
businesses and, therefore, need to be carefully mon-
itored and managed. Examples of some expected
management tasks also include traffic characteriza-
tion and accounting and extend to service testing and
fault handling, performance measurement and intru-
sion detection (especially those that explore high-
layer protocol vulnerabilities), to mention just a few.

For the network manager to be able to accomplish
these management tasks for each of the relevant pro-
tocols, services and applications, an integrated man-
agement environment is desirable. Instead of using
specific tools to monitor them individually (e.g. ICQ,
Naspter, DNS, and HTTP server), one should use a
unified framework. Besides being integrated, the size
of current networks requires this management envi-

ronment to be distributed, so that the solution scales.
The third requirement for the management environ-
ment is that it should be quick and easily adaptable
to monitor dynamic scenarios (e.g. new protocols,
services, and applications).

This paper presents the Trace Management Plat-
form, an extension of the SNMP infrastructure based
on programmable mid-level managers, monitoring,
and action agents, in order to support integrated, dis-
tributed and flexible management of high-layer pro-
tocols, services and networked applications. The pa-
per is organized as follows: section 2 describes ex-
pressive initiatives related to high-layer protocol, and
briefly comments on distributed management. Sec-
tion 3 presents PTSL, a graphical/textual language
for protocol trace representation. Section 4 intro-
duces the platform, its architecture and components.
Section 5 closes the paper by presenting an evaluation
of the platform, some conclusions and future work.

2 Related work

Many approaches have been proposed to both high-
layer protocol management and distributed manage-
ment. When it comes to high-layer protocol manage-
ment, monitoring is the main topic of research. The
ntop tool [1] is designed for traffic measurement and
monitoring, and includes features for per-protocol
network traffic characterization and usage. The Re-
mote Network Monitoring Management Information
Base Version 2 (RMON-2) [2], created in 1997, pro-
vides mechanisms to collect information similar to
ntop.

Other recent efforts related to monitoring are the
extensible architecture proposed by Malan and Jaha-
nian [3] and the Realtime Traffic Flow Measurement
(RTFM), developed by the group with the same name
at the IETF [4] and implemented by the NeTraMet
tool [5]. The RTFM architecture is based on dis-
tributed agents (called meters) that implement the
RTFM Meter MIB. These agents are capable of mak-
ing realtime packet flow measurement and account-
ing. The MIB allows an SNMP agent to query sta-
tistical data, as well as set agent configuration data.
Flow specifications are made through a set of rules

defined by a language called SRL [6] and determine
(a) which flows should be accounted, (b) which nodes
should be treated as flow origins and (c) which level
of detail is desired for each flow.

A demand instigated by the fast proliferation of
protocols and applications that flow over today’s
computer networks is the flexibility of monitoring
tools. Many existing tools are not completely pre-
pared to allow the monitoring of new protocols and
applications and operate on a fixed set of them. New
protocols can only be monitored through firmware
updates, as with some RMON-2 probes, or by low-
level programming languages, like the architecture
proposed by Malan and Jahanian and ntop. Many
network managers just end up neglecting these pos-
sibilities due to their complexity.

Other solutions are intrusive, due to the fact that
they require applications to be developed using spe-
cific monitoring procedure calls. This approach is
only suitable when monitoring is done within appli-
cations developed in-house, but it can not be used
to manage proprietary protocols and/or applications
(e.g. web browsers and clients). Besides, it is also
needed to spend more money on personnel training
on how to use the monitoring APIs.

The type and granularity of the collected informa-
tion are important aspects associated with the mon-
itoring. The RMON2 MIB and ntop collect statis-
tics like the number of packets sent/received by a
host or the number of packets exchanged between
two peers, classified accordingly to the protocol used
(HTTP, FTP, etc.). Advantages and disadvantages
of the RMON2 MIB have been shown by Gaspary et
al. in [7]. One of the weaknesses of both approaches
is the lack of information related to performance and
faults. These difficulties have been discussed by the
IETF RMON working group through the Application
Performance Measurement MIB (APM MIB) [8].

When it comes to granularity, accounting on the
RMON2 MIB is made per host, pairs of hosts and
protocol used. In the case of the ntop tool, it is pos-
sible to recognize and account packet flows, which are
specified by a set of low-level rules that are processed
by the BSD Packet Filter (BPF) [9]. In the RTFM
architecture, only predetermined protocol fields can
be read from captured packets (only up to the trans-

port layer). Information about high-layer protocols
can not be considered due to this limitation. Besides,
as it occurs with ntop, the same set of rules is applied
to each captured packet, making it impossible to cor-
relate messages from a same flow.

That is also very important to note that many
management tools like [1, 3, 5] are limited to monitor-
ing, leaving reactive and/or proactive management
to the human manager when an unexpected network
behavior is observed.

As for distributed management, Schoenwaelder et
al. present in [10] several approaches and existing
technologies for its deployment. Technologies based
on the dynamic delegation of management tasks and,
in special, the potential of delegation of those tasks
through the IETF Script MIB [11] are discussed and
commented. By using practical examples, they show
how the monitoring of thresholds and services can be
delegated to mid-level managers (MLM).

3 Protocol trace representation

The key technical aspect of our work is the use of
passive monitoring to observe and count transactions
of high-layer protocols, services and networked appli-
cations. The platform is not general-purpose, but
specifically geared towards running and analyzing
protocol traces and triggering custom scripts when
certain conditions are met. The transactions to be
monitored may represent scenarios related to fault,
accounting, performance and security management.

In order to be able to monitor protocol traces it
is necessary to define what exactly should be moni-
tored (the protocol interactions to be observed). For
this purpose, we have defined PTSL (Protocol Trace
Specification Language), a language for the represen-
tation of protocol traces based on the concept of finite
state machines (FSM). We have chosen this formal-
ism because it provides a natural and intuitive view
of protocols’ behavior. A more detailed explanation
of the language appears in [12, 13]. The language is
composed of graphical (Graphical PTSL) and textual
(Textual PTSL) notations, mentioned in subsections
3.1 and 3.2, respectively. These notations are not
equivalent. The textual notation allows the complete

representation of a trace in a descriptive fashion, in-
cluding the specification of the FSM and the events
that trigger transitions. In turn, the graphical nota-
tion covers only a subset of the textual notation, of-
fering the possibility of graphically representing the
FSM and only labeling the events that trigger tran-
sitions.

3.1 Graphical notation (Graphical
PTSL)

The network manager can create a specification to
monitor the whole protocol or just part of it. Interac-
tions between more than one protocol can also be rep-
resented. Figures 1a and b show two trace examples.
In the first case, (a), the trace monitors successful
transactions to a Web server. The second trace, (b),
does not describe a single protocol; instead it is made
up of a name resolution request (DNS protocol), fol-
lowed by an ICMP Port Unreachable message. This
trace occurs when the host where the service resides
is active, but the named daemon is not running.

��� �����	�
������������� ���������������������� � ��� ��� ��������� �
 ������!� � "�# � ����������������������%$%� # &%'����(� ����"���� ���)�
)�+,��-��,��.0/�'�����/�12
.)��� # ��3��
14$%����� ��5������ �����6.)������&������ 78����"���� +
5�����#)9�"�:���# �)�;)� � /�'�<	
���"	'������=� >)� � >)� ��<?7%@2�

'

7%A)�

-��)�0.,B ��� �8'����

� :�� �
>������

C ��D
 E�F G�H�I	J KML�N�O�I�F P!Q H�I6R2S�T�Q U S�F Q T�VW

Q X�Y I

Z I�F O�Q S�T�[�\�] ^K�I�O�H!F Q _�U Q S�T�[�`4a�I�H!b%Q c)KML�N�O�I�F P!Q H�I(Q O?F d�T�T�Q T�V)]
e If,[�KML�N�g�T�G�R%I�X
h S�F U [
i4j T�I�F [�k�d�H Q G�T�S h G�O�H�a�S�G�Y l8G�O�_�G�F fk�G�O�U)m�_�X�G�U I)[�E�d�I�g)\ n2opd�V?q�^�^�^	q)\�[n)\�[^�q	l2r2E

q

KML�NsF I�t�d�I�O�U

u `8r h R2I�O�O�G�V�I h S�F UmMT�F I�G�H�a�G�v�Y I

w v x

Figure 1: Graphical representation of a trace.

3.2 Textual notation (Textual PTSL)

Figure 2 presents the textual specification of the trace
previously shown in figure 1a. All specifications writ-

ten in Textual PTSL start with the Trace keyword
and end with the EndTrace keyword (lines 1 and 30).
Catalog and version control information come right
after the Trace keyword (lines 2–7). Forthwith, the
specification is split into three sections: Messages-
Section (lines 8–20), GroupsSection (not used in this
example) and StatesSection (lines 21–29). In Mes-
sagesSection and GroupsSection the events that trig-
ger transitions are defined. The FSM that specifies
the trace is defined in StatesSection.

�
�
�
�
�
�
�
�
�
� 	
�
�
� �
� �
���
� �
� �
� �
� �
� �
�
	
���
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
	

��� �
����� ���������
����� �
� ����� �
�����
��� !
"��� �
$%& �
' 	
(��
���)� # *
+ # $%& �����,�
�����
���.-.# + / �
	
	 � �
��*
$%���� '
0���12& 3��2��465 �
	
	 5
780
4�$� + & �
	
79-.%��� &
:
���
�%�$;4��
���
/�$
�� <=�
��*
�� 1
:��
��+�>�*
?
�
+ ��& @�� # 5 �
� ���
* �
	
	 	A� � & � � & 	
� <.B8�
B8�
�����
C
�
�����
��+ # $%
B8�
�����
C
�D� <8E2�2!
B8�
�����
C
�
�21�*
��&��
� # �%�+
F F7=� � ���
+ �1�*
�GE6%����
*
�)�
� �
+ # $%D@�# �� ?HI�
J8K
��
"��� K;(��
���)� # *
+ # $%
@�# �� ?
LI$�
%�+ ��2E�+ /��� %��
+ F M 4F ��L=4 	 <8E2�A� N��
O���
��+� $��;3����64A$
K�P �
��+ !
E�%�?B.�
�����
C
�
B8�
�����
C
�D� 3��2��4F �
' �=�
	
	 !
B8�
�����
C
�
�21�*
��&����� Q���
B8�
�����
C
�
��# J8�
$��+ & � 	
	
	
@�# �� ?
LI$�
%�+ ��2E�+ /��� %��
+ F M 4F ��L=4 	 3����642F �
' � � 4�� $
+ $
��$� Q��� �
$%R!
@�# �� ?
LI$�
%�+ ��2E�+ /��� %��
+ F M 4F ��L=4 �9�
	
	 � N��
*� 18��$
?
��!
E�%�?B.�
�����
C
�
E�%�?B.�
�����
C
�
���6�
��+ # $%
��+ �
+ �
���6�
��+ # $%
@�# %��� ��+ �
+ ��&�# ?� �
��+ �
+ �G# ?� �
� <.E��!2<=$
+ $
��+ �
+ � �
E�%�?
�6+ �
+ �
��+ �
+ � �
� 3��2��4F �
' �9�
	
	 !2<=$
+ $
��+ �
+ �;# ?� �
E�%�?
�6+ �
+ �
E�%�?
�6+ �
+ �
���6�
��+ # $%
E�%�?
�6� �
���

Figure 2: Textual representation of a trace.

4 Architecture of the Trace
Management Platform

The Trace Management Platform is an extension of
the SNMP centralized management infrastructure.
Through a three-tier model, it supports the dis-
tributed management of high-layer protocols, services
and networked applications. Figure 3 illustrates the
platform’s architecture. Based on the IETF Script

MIB [11], it provides mechanisms to allow a manage-
ment station to delegate management tasks to mid-
level managers (MLMs) that, in turn, interact with
monitoring and action agents to execute these tasks.
PTSL specifications are used by MLMs to program
monitoring agents that start sniffing packets flowing
on the network and wait for traces to happen. With
the information gathered from the monitoring pro-
cess, the MLMs may launch procedures on action
agents (Tcl or Perl scripts), enabling the automation
of several management tasks (including reactive and
proactive tasks). The platform also has notification
mechanisms (traps) so that agents are able to report
asynchronous events to scripts running on MLMs.
These MLMs are then able to filter and/or corre-
late these traps and signal the occurrence of major
events to the network management station (NMS).
The components of the platform are presented below.

4.1 Management station

The platform is made of one or more management
stations (managers). Through a web browser, the
human manager has access to the management envi-
ronment located on a Web server. For convenience,
our research group chose the PHP language and the
MySQL database to develop this environment. The
highlighted modules on the management station may
be hosted in the same station where the manager re-
sides. If there is more than one management station,
they may share the same environment core.

The most important tasks accomplished by the net-
work manager from a management station are:

• Registration of MLMs and agents: to ease the
coordination among the management station,
MLMs and agents, the network manager must
define who are the MLMs on the network, as
well as the agents located (hierarchically) below
these managers. Such binding is important to
define management boundaries. When delegat-
ing a management task, the MLM will only ma-
nipulate those agents it is a parent of. The nec-
essary interactions to this registration are pre-
sented in figure 3 (numbers 1, 2 and 3). This

��� � � � ���	�
�
���
	�����
�

�������
�����
���

� � � !
" #$% !
& '%

()* #$
+$#
* #$,�-	. / 0 � ,1 2 3 4 3 5 687 9 : 5 ; < : =� -	. / 0 ��?> @

�BAC�� D AC� �
�FEG�H�
	D

�I�J���
�����
���

,�-�. / 0 � ,1 6 ; K8L =� -�. / 0 ��?> @

MJ�BN��IO
�?> @

EGP�D � AQ�EG���
�D

���J���
�����
���

� � � !
" #$% !
& '%

()* #$
+$#
* #$,�-�. / 0 � ,1 2 3 4 3 5 6 7 9 : 5 ; < : =� -�. / 0 ��?> @

�B�

�����
R��
�DQS�D ��D � AC

T . U�VG, � . ,�-�. / 0 � ,W �CXJ�HY

. � 0�U�,�/ � U
. Z1 6 ; K8L 5 2 3 4 3 56 7 9 : 5 ; < : =
[��� � T � , �

"\
" � . � 0� U � /] / � . "&^_

`a)
(* a$

V � T
, � . b � .

c d e
c f ec g8e

c h e

c i e

c j8e

c k8e

c l8e

c m8e

c d j8e

c d f e
c d g8e

c d h e
c d i e

c d k8e c d l8e

c d m e

c j8n e

c j	d e

c j8j e

o � . ������?> @
� U � /] p�F> @

c d n8e c d d e

Figure 3: Components of the platform

numbering will be used henceforth in this sec-
tion to illustrate the platform’s data flow.

• Specification of a protocol trace (PTSL script):
by using the language introduced in section 3, it
is possible to specify a protocol trace. By means
of a wizard, the network manager may specify
the trace from scratch or reuse existing traces
stored on the database, deriving a new specifica-
tion based on previously defined traces (1, 2 and
3). For further use of this trace specification, it
must be mapped from the database onto a text
file and stored in the repository (4).

• Specification of an action (Java, Perl or Tcl
script): the action scripts do not necessarily
have to be specified using the web-based environ-
ment facilities. It is possible to upload a script
to the repository (1, 2 and 4). It is recommended
to test these scripts to exhaustion before sending
them to the repository. Most Script MIB run-
time environments offer debugging capabilities,
but some do not.

• Specification of a management task: again, by
using a wizard the management environment
provides (see figure 4), the network manager
specifies a management task (flows 1, 2 and 3
in figure 3). When defining the task, the net-

work manager informs the trace to be observed,
the identification of the object belonging to the
extended RMON2 MIB (explained later), where
the observations of the chosen protocol trace
will be counted, the polling interval and the ac-
tions to be triggered when certain thresholds are
reached. These specifications, as usually hap-
pens with PTSL specifications, are kept within
the database.

• Delegation of a management task: to delegate a
task to an MLM, the task must be retrieved from
the database (1, 2 and 3). Besides, the network
manager must choose the mid-level manager, the
monitoring agent and the action agent (the latter
is not mandatory) that will be responsible for the
execution of the task. A corresponding Tcl script
is automatically generated and made available
at the repository (4). After going through these
steps, the execution of the script is delegated to
the MLM (5, 6) via SNMP (Script MIB).

• Monitoring of a management task: during the
execution of a management task, the manager
may query the MLM to get intermediate results
of a running task (1, 2, 5 and 6).

• Interruption of a management task: the inter-
ruption of a management task requires the re-

� ������� � 	 �
��� � ��� � ������� � ��� � ��� � ���� � ���

� ������� � � �!�� � ��� � "������ � ��# � ��$ � ����� � ���

� ������� � � �!�� � ��� � ������� � ��� � ��� � %&
� � ���

Figure 4: Specification of a management task using the wizard

moval of all programming made on the moni-
toring and action agents involved. Only after
that it will be possible to terminate the execu-
tion of the script (i.e., the management task)
at the MLM (1, 2, 5 and 6). It is important
to mention that the latest release of the Script
MIB provides mechanisms to expire and remove
old (possibly forgotten) entries automatically.

• Receiving and viewing traps: the manager may
receive traps through a module called Trap No-
tifier (21). When received, all traps are stored
on the database (22). Traps are permanently
retrieved by a PHP script (3) that updates the
manager’s web browser (2 and 1) using HTTP
push technology.

4.2 Mid-level manager

The MLM runs and monitors management tasks del-
egated by NMSs and reports major events back to
these stations. There may be one or more MLMs
inside each network. The number of MLMs is deter-
mined by the network manager and depends on sev-
eral factors (e.g. the size and complexity of the net-
work infrastructure or human administrative bound-
aries).

The delegation of a task to an MLM, as mentioned,
is performed by NMSs through SNMP primitives,
which are supported by the PHP language (flows 5
and 6 in figure 3). When a new entry is created on
the Script MIB launch table, the agent automatically

downloads the script from the configured URL (7).
After this table entry is enabled, the agent is then
ready to start running the script (8).

As stated before, the management tasks specified
by the network manager are automatically converted
to Tcl scripts in order to be run by MLMs. Although
Jasmin [14] (the Script MIB implementation used in
our prototype) also supports Java and Perl, we have
chosen Tcl because it has inherent network manage-
ment characteristics and several libraries to support
network management operations, besides being flex-
ible and portable. The complexity of scripts run by
MLMs is not a critical factor since all specification
and delegation of management tasks is made by wiz-
ards, even though Tcl scripts can be easily written
and understood by those not familiar with the lan-
guage.

Figure 5 presents a sample script used to monitor
the occurrence of a trace. It was generated automati-
cally by the platform from the specification presented
in figure 4. In lines 8–11 and 12–16 the monitoring
and action agents are programmed, respectively. The
monitoring agent is, in line 17, asked to start observ-
ing the network for the occurrence of the trace just
programmed. Then, the MLM polls it every 120 sec-
ond (line 28) to get information (lines 3 and 20) and
checks whether the trace has been counted or not
(line 22). If the trace has been observed three times
within an interval, another script is launched at the
action agent (line 23), to run a management proce-
dure. Intermediate and final results are generated by

the script (lines 28 and 29) and made available in the
Script MIB.

The script running at the MLM can configure
which traps it wishes to receive by using the Tar-
get and Notification MIB’s installed on monitoring
and action agents. On the Target MIB, the MLM
sets its IP address and UDP port number to where
traps are sent (see figure 3, flows 9 and 10) (this port
number must be unique among all scripts running at
the MLM). The Notification MIB allows the script to
set which traps it wishes to receive (these are filtered
at the notifier) (9, 11) [15]. If the script implements a
trap handler, it can run a procedure whenever a trap
arrives. Traps can be correlated and a more valuable
notification may be sent to the NMS (21). This con-
figuration of trap sinks eases the implementation of
monitoring and action scripts, since they do not have
to care about which are their trap sinks and which
credentials should be used to send them.

�
�
�
�
�
�
�
�
�
� 	
�
�

� �
� �
���
� �
� �

� �
� �
� �
�
	
���
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
	

�
�
�
���
�
��� �
��
� � �����
� ��� 	
�
�
�
���
�
��� �
��
� � ����� �
��� �
� 	
 ��
!"� #�$ �� "
! "
��"% &'� �! � �� "
! "
��"% &'� �! (�! �
!
)���! � * � �� "
! "
��"% &'� �! (+! �
!
,�� ! � �
� � 	 $
 ��
!�� �.- 	
� /10+2 ���
! �1340 5 5 �+�
��5 5
�
�6���
����� �
! "� 7 �
#
#� �
 � 8
�
�
���! 9� �:19;0
5 5 �+�
��5 5
�6<=�.<1� ! 7 ��"
#
�>� �
��! � �6�)+� � "��$)�� � "�1�
� �
�
! � ���?(A@'B�,C ��
 �
� "�5�8

$

9
� /10 2 �.�
! �
360 ��� �
����5 5 D �� �! �% % (��1� � �
!18�=�?8�6E1".F6����18�6E;���1�=�?8�6E;% �����8�4E1
� � G

8�4E1#
�
 ��
�8�4E1�� �
 =8�4E;% ! � �=�?8�6E1�
! � �6��8�4E;�?� �
�68�4E;�=��"�6�.9��
: 9�0
5 5 �+�
��5 5
�6<=�.<1� ! 7 ��"
#
�>� �
� ! � �6�)+� � "��$)�� � "�;� �� �! �% % � ���? ��1� � �
! 5�8
�$

9

� /10 2 �.�
! �
360 ��� �
����5 5 D �� �! �% % (��1� � �
!18
�
��8
�.E1".F6����18
�.E;����=�?8
�.E;% ����?8
�.E1
� � G
8
�.E1#
�
 ��
�8
�.E1�� �
 68
�.E;% ! � �=�?8
�.E1�
! � �=�?8
�.E;�?� �
�68
�.E;�6��"�=�.9��
: 9;0

5 5 �+� �
����5 5 H'�
� �� �! �% % (��
� � �
!8�=�?8�4E1".F6����8�4E;����=�
5 5 �+�
��5 5
�6<=�.<1� ! 7 ��"
�>� �
��! � �6�)+� � "��$)�� � "�;� �� �! �% % � ���? ��1� � �
! 5�8
�$

9

5 5 �+� �
����5 5 I'�
��(��
� � �
!8�6��8�4E1".F6����8�4E;����=� 	
�� "
���6"�
� ! "�
0 9�0
�% "
J
�% ="� #?�� �.-
 .�
!
-
�% 2 8
 �
�
!8
"� # :
 .�
!
-
�%�2 % � ��#
�.<�2 % � ��#
�.<?8.-.�% 	 : � : K
� /10 2 �.<.��18.-
�% 7 8
�� ��-
:1L � 9;0
5 5 �+� �
����5 5 I'�
��(+�
� � �
!18 �
��8
�.E1".F6����18
�.E;����=� �

9
 .�
!1�� �.-=8.-.�%

9
5 5 �+�
��5 5 M "
J?�
� �
�
! � G

7 � ��! �� -.�% � �
	
	
	
	 7 �� � "� 0 5 5 �+�
��5 5
�4<?�.<1� ! 7 ��"
#
�>� �
��! � �6�)+� � "�8
�� � "� D ��/ " 9 G
7 �.<1� ! 0 5 5 ���
�>5 5 1�4<=�.<� ! 9 7 ��"�?�=���#=0 �="�
� ! "� 9

-�FN�� !/ "� �.-.��

Figure 5: Sample script run by MLMs

It can be noted that the communication between

MLMs and monitoring or legacy SNMP agents (han-
dled by the Tcl scripts) is made through SNMP prim-
itives provided by Tcl through the Scotty package
[16]. The same happens between MLMs and the man-
agement station when traps are sent. The program-
ming of the Script MIB on the monitoring (9, 12)
and action agents (17, 18) is made with the aid of a
specially developed Tcl package (see line 2 in figure
5), called Trace.

4.3 Monitoring agent

The monitoring agents count the occurrence of traces
on the network segment where they are located. They
are called extensible because the traces to be moni-
tored can be dynamically configured. The configura-
tion of which traces should be monitored at a given
moment is made by the MLM through the Script MIB
(see flows 9 and 12 in figure 3). On the script run by
the MLM (figure 5), it is possible to see how the mon-
itoring agent is programmed (lines 8–11). One of the
parameters passed is the URL of the script (PTSL
specification) that will be run. When the MLM re-
quests the installation and execution of a script, it
is retrieved from the repository via HTTP (13) and
executed (14). Actually, the PTSL is not executable.
The semantics associated to line 17 in figure 5 makes
the monitoring agent start monitoring a new trace.
In an analogous way, the interruption of a script on
the Script MIB means programming the monitoring
agent so that it ceases monitoring the trace defined
by the script.

Every time a trace is observed between any pair
of peers, data is stored on a mySQL database. This
database is source of information for the SNMP sub-
agent that implements an extended version of the
RMON2 MIB [2, 7] (15) (also developed by our re-
search group). One of the differences between our
MIB and RMON2 is that the protocolDir group,
which indicates which protocol encapsulations the
agent is capable to monitor, now allows protocol
traces to be indexed.

The alMatrix group from the RMON2 MIB stores
statistical data about the trace when it is observed
between each pair of peers. Table 1 illustrates the
contents of the alMatrixSD table of our extended

MIB. It counts the number of packets/octets between
each pair of peers (client/server) at the granularity of
protocol traces.

Table 1: Information from the alMatrixSD table������� ��� 	
����� ����� ��� ��� ��� ������� ����������� � �
��� ��� �
� ����� � ��� � ����� � � ����� � ��� � ����� � �
�! #"�$�% &(')�$+*-,�.�' / ,�% ' .�0 1 1�� 2�3��
� ����� � ��� � ����� 2�� � ����� � ��� � ����� � �
�! #"�$�% &(')�$+*-,�.�' / ,�% ' .�0 � ��� 2����
� ����� � ��� � ����� � � ����� � ��� � ����� ��3�1 54�)�)�$�"�"�6 4�7 8#8#8:9�)�)�$�"�" ��3�1 ��� ������� � ���
� ��3�� � ����� � ��� � ��� � ����� � ��� � ����� ��3�1 ;
.�"(4�)�)�$�"�"�6 4�7 <�=?>@)�,�.�.�$�)�/ ' ,�.?9�/ / $�*-A�/ ��� 2�� ����1

One disadvantage of the RMON2 MIB is that it
does not have the capability of generating perfor-
mance information. Because of that, our group is
currently evaluating the possibility of using an ex-
tension of the RMON2 MIB, the Application Perfor-
mance Measurement MIB [8]. Table 2 presents the
type of information stored by this MIB. The first line
indicates that the Successful WWW access trace was
observed 127 times between hosts 172.16.108.1 and
172.16.108.254. The number of traces that did not
complete with success was 232 and the mean response
time for successful observations was 6 seconds.

Table 2: MIB with performance information
 B!C D E�F�G H�E�I J E�I K�I L�G L�M�L�C H�N�M�M�E�O�O

P Q
F�O�N�M�M�E�O�O

P R
E�O STL�F�O�D J

PU V�W�X U Y�X U Z�[�X U U V�W�X U Y�X U Z�[X W�\�] ^!_�`�`�a�b�b�c _�d e#e#egf�`�`�a�b�b U W�V W�h�W Yib�a�`�X
U V�W�X U Y�X U Z�[�X U W�Z�Z�X W�]�[�X W�\�W�X U ^!_�`�`�a�b�b�c _�d e#e#egf�`�`�a�b�b W�h�W U�U W U Vjb�a�`�X
U Z�X U Z�X U h�\�X U W�\ W�Z�Z�X W�]�[�X W�\�W�X U ^�k!lnmTd o�o�p U Z�X W�h�] \�Y hib�a�`�X

4.4 Action agent

Through monitoring agents, MLMs are able to eval-
uate whether a trace has occurred or not. Traces
may represent network service failures, intrusion at-
tempts, service performance degradation, and other
problems. In this context, the action agents are re-
sponsible for the execution of reactive (and poten-
tially proactive) management procedures created to
autonomously handle these problems. Let’s take, for
instance, the DNS service monitoring. When a mid-
level manager detects that the service is not running
(through the monitoring loop), it can ask an action
agent (located on the same host of the service) to run
a script developed in Java, Perl or Tcl to restart the
service.

The communication between MLMs and action
agents is made through the Script MIB (see flows
17 and 18 in figure 3). Once the Script MIB is pro-
grammed to run an action script, it is retrieved via
HTTP from the repository (19) and then executed
(20).

5 Conclusions and future work

This paper presented an open platform for integrated,
distributed and flexible management of high-layer
protocols, services and networked applications based
on the use of programmable agents. Based on the
IETF SNMP standard, this platform does not re-
quire major changes in existing management systems
(which took years to consolidate). The use of MIBs
as source of information for the management tasks
makes our approach more homogeneous. Informa-
tion that in other approaches depend on proprietary
mechanisms to be gathered (e.g. CPU utilization and
memory usage) is retrieved from standardized MIBs
(e.g. Host Resources MIB [17]) in ours. Since the
platform’s management environment has been devel-
oped using PHP, it can be fully customized (e.g. new
wizards can be easily created).

The effort to monitor a new application is not high
with the proposed approach. To do that the network
manager is supposed to select the protocol traces of
his interest and specify them using the PTSL lan-
guage. Once the protocol traces are specified, the
network manager must define the management tasks
(what is going to happen when the traces have been
observed). As the platform provides wizards to ac-
complish both tasks, the complexity of monitoring
a new application does not reside in the usage of
the platform, but in the knowledge that the network
manager must have of the protocol used by the ap-
plication to be monitored.

Regarding flexibility, the proposal of the PTSL lan-
guage is one of the most important contributions of
this work. All approaches discussed and listed in sec-
tion 2 are limited to the accounting of sent/received
packets between pairs of peers, classifying them ac-
cording to protocols [2] or flows [1, 5]. In these
approaches, the manager has access to information

limited to the style “host A sent n octets/packets
to host B”, with filters to some well-known proto-
cols (e.g. HTTP and SMTP) or packets with spe-
cific header fields. The innovations aggregated with
PTSL increase the granularity in which protocols are
monitored, enabling the analysis of the behavior of
a protocol or just part of a protocol by introduc-
ing the representation of desired traces. This feeds
the network manager with more accurate informa-
tion, which will help him/her deploy fault, configura-
tion, accounting, performance and security manage-
ment to high-layer network protocols and services.
Using the previous example, the language allows the
accounting of successful, unsuccessful and unautho-
rized HTTP accesses, as well as many other possible
HTTP behavior. The PTSL power of expression is
another strong point. While many approaches allow
the selection of packets based on a few predetermined
header fields only up to the transport layer [5], PTSL
goes further, allowing the use of filters based on any
protocol, all the way up to the application layer.

Integrated management is an inherent character-
istic of the platform. Instead of using specific tools
to monitor individual protocols and services (web,
video-on-demand, etc.), one can use the Trace Man-
agement Platform to monitor such protocols, ser-
vices and applications through a unified framework.
By delegating the functionality of these tools to dis-
tributed management stations, our approach burdens
off the workload on the hosts where these services are
installed.

One positive aspect of the Trace Management Plat-
form is the possibility of making effective manage-
ment of high-layer network protocols, services and
applications by integrating the PTSL language with
programmable monitoring agents and by associating
the occurrence of specific traces to dynamically pro-
grammable actions, enabling the automation of a set
of management procedures. The proposed platform
is not limited to monitoring. On the contrary, it pro-
vides a more complete and broader solution that in-
cludes the execution of actions, enabling both reac-
tive and proactive management.

Another positive aspect of the platform is a signif-
icant increase of scalability in relation to the tradi-
tional SNMP management paradigm, since it can del-

egate management tasks, previously processed only
at the centralized management station, to MLMs.
The robustness aggregated to the management tasks
also represents an important contribution. The plat-
form allows the delegation of management functions
to MLMs that are closer to the monitored agents; if
the connection is lost between the centralized man-
agement station and the MLM, these management
tasks will still be able to run. The delegation is not
only about tasks, but it also will delegate CPU cy-
cles and will keep polling as close as possible to the
management targets.

Regarding security, the Script MIB supports all
facilities provided by SNMPv3, including the User-
based Security Model (USM) and the View-based Ac-
cess control (VACM). In [18] Schönwälder and Quit-
tek describe the security aspects related to the Script
MIB in detail. Using these facilities it is assured that
the monitoring and action agents cannot be ”repro-
grammed” by a person who is not allowed to do this.

However, this distributed platform demands more
work to be controlled. The component management
becomes quite a complex task. Included in the com-
ponent management are the distribution and update
of scripts, as well as the retrieval and correlation of
results. The creation of mechanisms that allow trans-
parent use of the platform (e.g. wizards) helped us
to hide much of this complexity from the network
manager.

We are now working to release a version of the plat-
form under the GPL2 licence. Performance tests of
both the Script MIB and the monitoring engine are
being carried out. However, Schönwälder presents
good results in [10], where the Jasmin implementa-
tion has been evaluated.

References

[1] L. Deri and S. Suin. Ntop: Beyond Ping and
Traceroute. Proc. 10th IFIP/IEEE Workshop on
Distributed Systems: Operations and Management,
Zurich, Oct. 1999, p. 271–283, Springer Verlag.

[2] S. Waldbusser. Remote Network Monitoring
Management Information Base Version 2 using

SMIv2. RFC 2021, INS, Jan. 1997.

[3] G. Malan and F. Jahanian. An Extensible Probe
Architecture for Network Protocol Performance
Measurement. Proc. SIGCOMM, Vancouver, Sep.
1998.

[4] N. Brownlee, C. Mills and G. Ruth. Traffic Flow
Measurement: Architecture. RFC 2722, The Uni-
versity of Auckland, GTE Laboratories, Inc., GTE
Internetworking, Oct. 1999.

[5] N. Brownlee. NeTraMet.
http://www.auckland.ac.nz/net/Internet/rtfm/.

[6] N. Brownlee. SRL: A Language for Describing
Traffic Flows and Specifying Actions for Flow
Groups. RFC 2723, The University of Auckland,
Oct. 1999.

[7] L. P. Gaspary and L. R. Tarouco. Characteri-
zation and Measurements of Enterprise Network
Traffic with RMON2. Proc. 10th IFIP/IEEE In-
ternational Workshop on Distributed Systems: Op-
erations and Management, Zurich, Oct. 1999, p.
229–242, Springer Verlag.

[8] S. Waldbusser. Application Performance Mea-
surement MIB. Internet Draft, February 2002.

[9] S. McCanne and V. Jacobson. The BSD Packet
Filter: A New Architecture for User-Level Packet
Capture. Proc. Winter USENIX Conference, 1993.

[10] J. Schönwälder, J. Quittek and C. Kappler.
Building Distributed Management Applications
with the IETF Script MIB. IEEE Journal on Se-
lected Areas in Communications, 18(5):702–714,
2000.

[11] D. Levi and J. Schönwälder. Definitions of Man-
aged Objects for the Delegation of Management
Scripts. Request for Comments 3165, Nortel Net-
works, TU Braunschweig, August 2001.

[12] L. P. Gaspary, L. F. Balbinot, R. Storch,
F. Wendt and L. R. Tarouco. Towards a Pro-
grammable Agent-based Architecture for Enter-
prise Application and Service Management. Proc.

First IEEE/IEC Enterprise Networking Applica-
tions and Services Conference, Atlanta, Jun. 2001,
p. 39–46.

[13] L. P. Gaspary, L. F. Balbinot, R. Storch, F.
Wendt and L. R. Tarouco. Distributed Manage-
ment of High-Layer Protocols and Network Ser-
vices through a Programmable Agent-Based Archi-
tecture. Proc. IEEE International Conference on
Networking, Colmar, France, Jul. 2001, part 1, p.
204–217, Springer Verlag.

[14] TU Braunschweig, NEC C&C Research Labo-
ratories. Jasmin - A Script MIB Implementation.
http://www.ibr.cu.tu-bs.de/projects/jasmin.

[15] D. Levi, P. Meyer and B. Stewart. SNMP Ap-
plications. RFC 2573, SNMP Research, Inc. , Se-
cure Computing Corporation, Cisco Systems, Apr.
1999.

[16] TU Braunschweig. Scotty. http://www.ibr.cs.tu-
bs.de/projects/scotty/.

[17] S. Waldbusser and P. Grillo. Host Resources
MIB. RFC 2790, Lucent Technologies Inc. ,
WeSync.com, Mar. 2000.

[18] J. Schönwälder, J. Quittek. Secure Internet
Management By Delegation. Computer Networks,
35(1):39–56, January 2001.

