
On the Development of IETF-based Network Monitoring
Probes for High Speed Networks

Ricardo Sanchez, Rodrigo Pereira, Luciano Gaspary

Universidade do Vale do Rio dos Sinos
Centro de Cîencias Exatas e Tecnológicas

Programa Interdisciplinar de Pós-Graduaç̃ao em Computaç̃ao Aplicada (PIPCA)
Av. Unisinos 950 – CEP 93.022-000 – São Leopoldo, Brazil

{rnsanchez,rspereira,paschoal }@exatas.unisinos.br

Abstract

In the recent years network managers have increasingly relied on monitoring tools to charac-
terize and measure high-layer protocol traffic in order to (a) justify investments on network equip-
ment acquisition, (b) identify most network-consuming users, (c) detect bottlenecks, to mention
just a few reasons. The Internet Engineering Task Force (IETF), aware of the mentioned demand,
has been making efforts to standardize management mechanisms that allow the characterization
and measurement of both protocols and networked applications behavior. However, the develop-
ment of IETF compliant probes so that they sustain the traffic generated in high speed networks
is a current challenge, since communication links operating at 100 Mbps or higher rates require
efficient packet filtering and processing mechanisms so that probes do not discard packets. This
paper reports the development, by our research group, of an RMON2 compliant SNMP agent.
The paper focuses on the project decisions, including the architecture and data structures used
(having in mind that the agent is supposed to be deployed in high speed network environments).
The paper also presents a performance evaluation of the agent.

Keywords: High speed network, monitoring, RMON2, SNMP.

1 Introduction

The popularization of computer networks in the recent years brought about the appearance of a high
number of distributed applications and high-layer protocols. Online games such as Quake, videocon-
ferencing tools (e.g. NetMeeting and CUseeMe) and applications for message and file exchange, like
ICQ and Kazaa, are some examples of the “new” menu of networked applications. These applications
and many other have been increasingly incorporated by network users to their daily routine, which for
the network manager means the need for constant alterations in the network infrastructure to support
the increasing traffic imposed by them. Such modifications involve costs and, therefore, they need to
be justified. Due to the diversity and complexity of these applications, not onlycapacity planninghas
become a more challenging task, but alsotraffic characterizationandmonitoringas well asnetwork
optimization.

The Internet Engineering Task Force (IETF), aware of the mentioned problem, has been making
efforts to standardize management mechanisms that allow the characterization and measurement of

both protocols and networked applications behavior. Remote Network Monitoring MIB version 2
(RMON2) [1], Application Performance Measurement MIB (APM) [2] and Real-time Application
QoS Monitoring MIB (RAQMON) [3] are examples of initiatives where thermonmibworking group
has been working on since the end of the 90’s.

The importance of these standards is unquestionable. By using standard MIBs to accomplish
protocols and networked applications monitoring, it becomes possible to manage an heterogeneous
infrastructure, with network devices and probes from different vendors, using both the same interface
(e.g. RMON2, APM and RAQMON MIBs) and communication protocol (e.g. SNMP). Besides, in
opposition to what happens to most of the proprietary monitoring tools, a management station can
collect data from several probes. Therefore, it is possible to monitor several subnets from one central
manager.

The development of IETF compliant probes so that they sustain the traffic generated in high speed
networks is a current challenge. On the one hand, communication links operating at 100 Mbps or
higher rates require efficient packet filtering and processing mechanisms so that probes do not dis-
card packets. On the other, the size and complexity of the supported MIBs do not help to make the
monitoring process efficient. IETF MIBs, specially RMON2, are composed of several groups that
provide the network manager with different views about the monitored traffic. Hence, regardless of
the architecture and data model used, each observed packet in the network traffic requires one or more
updates in the internal structures maintained by the probe (delaying the accounting process).

This paper reports the development, by our research group, of an RMON2 compliant SNMP agent.
The paper focuses on the project decisions, including the architecture and data structures used (having
in mind that the agent is supposed to be deployed in high speed network environments). The paper
also presents a performance evaluation of the agent. Beside discussing the difficulties of, at the same
time, developing probes in conformance with IETF standards and make them able to operate in high
speed networks, it is also a major contribution of this work the release of an open and free software-
based RMON2 agent, which is an extension to NET-SNMP [4], and that can be used as an alternative
to the expensive probes as there are not many requirements to run it on Intel x86 stations (e.g. PCs).
The agent can be deployed in any institution at close to zero costs and be used as a base to other
academic researches1.

The paper is organized as follows: section 2 describes some related works. In section 3 we present
the developed agent. The paper follows with a detailed presentation, in section 4, of the performance
evaluation done with the agent. Section 5 concludes with some final considerations and prospects for
future research.

2 Related Work

Research works related to real time network traffic monitoring aim, in general, at proposing software
architectures that are able to handle a large number of packets with the lowest possible discard rates.
An approach to accomplish this objective is the use of efficient filtering and packet matching mech-
anisms. Monitoring tools proposed by Malan and Jahanian [5] and Anagnostakis et al. [6] take this
aspect into account. Windmill is a passive network protocol performance measurement tool. The
tool provides the underlying filtering mechanism as well as the ability to reconstruct the high-level
protocol streams. It utilizes dynamic code generation for fast packet matching and is designed to
demultiplex packets to a set of receivers (one-to-many). Through the combination of dynamic com-
pilation and a fast matching algorithm, Windmill’s WPF can match an incoming packet with five
components in less than 350ns on a 200MHz Pentium-Pro. FLAME is a programmable packet mon-
itoring system that provides a mechanism for loading code in the system kernel. It guarantees safety

1It is important to highlight that there is no other open and free RMON2 agent implementation available.

by using a type-safe language and run-time checks. Developers claim that the system sustains itself
even under Gigabit per second traffic rates.

Other complementary and equally important approach to develop efficient real time traffic moni-
toring probes focuses on using data strucures that provide fast store and update procedures, since they
are invoked at least once for every analyzed packet. In the case of ntop [7], an open-source web-based
network usage monitor that enables users to track relevant network activities including network uti-
lization, established connections, network protocol usage and traffic classification, hosts information
is stored in a large hash table whose key is the 48 bit hardware (MAC) address that guarantees its
uniqueness. Each entry contains several counters that keep track of the data sent/received by the host,
sorted according to the supported network protocols. For each packet, the hash entry corresponding to
packet source and destination is retrieved or created if not yet present. IPTraf is a network monitoring
utility for IP networks that uses a similar approach [8]. The main data structures used by the various
facilities are doubly-linked lists. This makes it easier to scroll forward and backward, and the max-
imum number of entries is limited only by available memory. Search operations on most facilities,
are performed linearly, and have a mild hit [8]. The IP Traffic Monitor (part of IPTraf) though uses a
hash table for better search efficiency, due to its propensity to grow quite rapidly.

Triticom, Network Harmoni, Cisco and Enterasys sell RMON2 probes that support 10 to 100
Mbps traffic rates. However, information about packet filtering optimization and processing are not
provided by these vendors. The RMON2 agent our research group has developed, as presented in the
next sections, makes use of a user-level packet capture library and, therefore, tends to be less efficient
than approaches that push this functionality into the kernel (e.g. FLAME). However, the station where
our agent is installed can be used to run other applications concurrently. Regarding the data structures
used to accomodate statistics provided by RMON2, we have mostly employed tables (implemented
as vectors) indexed byhashfunctions. Besides, we have used additional mechanisms such ascaching
to improve agent efficiency (to support high-speed network traffic).

3 Internals of the RMON2 Agent

In this section we describe the RMON2-compliant SNMP agent developed by our research group.
The section starts with a brief review of the RMON2 MIB (sub-section 3.1), followed by a detailed
description of the agent’s architecture (sub-section 3.2). Then we present (a) the mechanisms used by
the agent to store collected information (sub-section 3.3) and (b) relevant optimizations implemented
(sub-section 3.4).

3.1 A Brief Review of the RMON2 Management Information Base

The works to extend RMON MIB and include mechanisms to monitor higher-layer protocols began
in 1994. This initiative, called RMON2, resulted in the creation of RFC 2021 in January 1997 [1].
When monitoring high-layer protocols such as network and application-layer protocols, it is possible
to visualize the whole corporate network instead of individual segments. Briefly, the groups defined
in RMON2 MIB (as illustrated in figure 1) are:

• protocol directory(protocolDir): repository that indicates all the protocol encapsulations
that the probe is capable to interpret;

• protocol distribution(protocolDist): statistics about the amount of traffic generated by
each protocol encapsulation observed by the probe;

• address map(addressMap): associates each network-layer address to the respective MAC
address, storing it in a table;

• network-layer host(nlHost): collects statistics about the amount of input/output traffic of the
hosts based on their network-layer addresses;

• network-layer matrix(nlMatrix): provides statistics about the amount of traffic between host
pairs based on their network-layer addresses;

• application-layer host(alHost): collects statistics about the amount of input/output traffic of
the hosts based on their application-layer addresses;

• application-layer matrix(alMatrix): provides statistics about the amount of traffic between
host pairs based on their application-layer addresses;

• user-history collection(usrHistory): periodically samples objects specified by the user
(manager) and stores the collected information in tables;

• probe configuration(probeConfig): controls the configuration of various operational param-
eters that are supported by the probe, software and hardware revision numbers of the probe, a
trap destination table, and so on;

• rmon conformance(rmonConformance): describes the requirements for conformance to the
RMON2 MIB.

4

5

4

.1.3.6.1.2.1.16

.11

.12

.15

.20

addressMap 10

rmonConformance

4

protocolDir

protocolDist

nlHost

alHostnlMatrix

.16

.14

.13

.17

alMatrix

.18

usrHistory

probeConfig

.19

rmon2

Tabular objects quantity

Scalar objects quantity

Sub−trees quantity

Figure 1: Structure of the RMON2 MIB

The agent we have developed comprises the groups that provide statistical information (high-
lighted in figure 1): protocol directory, protocol distribution, network-layer host, network-layer
matrix, application-layer hoste application-layer matrix. The protocol directorygroup is com-
posed of a single table calledprotocolDir . The protocol distributiongroup, on its turn, con-
sists of two tables:protocolDistControl , which controls the collection of basic statistics, and
protocolDistStats , which stores the collected data. Similarly, thenetwork-layer hostgroup
comprises a control table (hlHostControl) and a data table (nlHost). Network-layer matrixcon-
sists of five tables: hlMatrixControl , nlMatrixSD , nlMatrixDS ,
nlMatrixTopNControl e nlMatrixTopN . Theapplication-layer hostgroup is composed of
a control table (hlHostControl), which is the same as thenetwork-layer hostgroup, and a data
table (alHost). And last but not least,Application-layer matrixshares thehlMatrixControl
table with Network-layer matrixand has four tables of its own:alMatrixSD , alMatrixDS ,
alMatrixTopNControl e alMatrixTopN . Gaspary et al. describe in [9] the purpose of each
of these tables in detail.

3.2 Architecture of the Agent

The agent runs on GNU/Linux stations and was developed as an extension to the the Net-SNMP
framework [4], using the C language, the POSIX thread library and the packet capturelibpcap li-
brary [10]. Figure 2 shows the agent architecture. ThePM(Processing Module) module is responsible
for receiving and analyzing the captured packets (detailed in sub-sections 3.2.1 and 3.2.2). Essential
information of the analyzed packets are identified and stored in an auxiliary data structure to be used
later on by theUM(Update Module) module. TheUMmodule, with the obtained information, updates
the tables that store the statistics provided by the RMON2 MIB (sub-section 3.2.3). Finally, theW
(Wrapper) module is an interface of the developed agent with the Net-SNMP daemon (sub-section
3.2.4).

PM WUM

Net−SNMPQueue

libpcap

Processing ModulePM:

WrapperW:
UM: Update Module

MIB

librmon2.so

3
Busy?

No

Yes

5

4

2
1

Figure 2: Internal organization of the agent

3.2.1 Packet capture

Packets are captured using thelibpcap (Packet Capture library) library, which provides the devel-
oper with a high-level interface to capture all the packets flowing on the network segment. When
the agent requests the library to start capturing packets in a certain interface, it registers a call-back
function that is invoked whenever a packet is captured, delivering it to thePMmodule (see flow
1 in figure 2). The agent explores the filtering mechanisms available in the library. Hence, only
packets whose encapsulation are registered atprotocolDir table are captured, minimizing the
number of packets that would be unnecessarily processed otherwise. When packets are discarded,
the quantity of dropped packets is measured andprotocolDistControl , hlHostControl ,
hlMatrixControl , alHostControl andhlMatrixControl tables are updated.

3.2.2 Packet processing

To speed up the process of updating the tables that compose the RMON2 MIB, each packet delivered
by the libpcap to thePMmodule is analyzed and essential information are grouped in a PEDB
(Packet Essential Information Block). If theUMmodule is not busy, the PEDB is directly dispatched
to it. Otherwise it is inserted in a circular queue (as illustrated in flow 2 of figure 2). This queue leads
to packet loss rate reduction (especially during network traffic peaks). Figure 3 shows the essential
information that are extracted from each packet and grouped in a PEDB.

3.2.3 Update of the RMON2 tables

Concurrently to the process just mentioned, theUMmodule checks if there is any pending PEDB
in the queue. If not, it is going to block until thePMmodule delivers new data. Whenever theUM
module receives a new PEDB, it updates the RMON2 MIB tables executing the procedure described
below. To illustrate it, consider anhttp/tcp/ipv4/ether2 packet being processed by an agent
configured to identify the encapsulations listed in figure 4.

Sequence Number

Acknowledge Number

Window

Urg PointerChecksum

Options Pad

DO Reserv Flags

Length

Identification

Checksum

Fragmentation

IHL ToS

TTL

Length Checksum

IPv4 Packet Header TCP Protocol Header UDP Protocol Header

Dst PortSrc Port

Source IP Address

Transp

Destination IP Address

4 Src Port Dst Port

Figure 3: Essential information extracted from the captured packets

• First, theUMmodule checks if there is an encapsulation registered at theprotocolDir table
that matches the encapsulation of the PEDB being processed, taking onlylink andnetwork lay-
ers into account. If so, as occurs in figure 4 (a), then tablesprotocolDistStats , nlHost
andnlMatrix must be updated.

• Second, theUMmodule checks if there is an encapsulation registered at theprotocolDir ta-
ble that matches the encapsulation of the PEDB being processed, taking onlylink , network and
transport layers into account. If so, as occurs in figure 4 (b), then tablesprotocolDistStats ,
nlHost , nlMatrix , alHost andalMatrix must be updated.

• Third, theUMmodule checks if there is an encapsulation registered at theprotocolDir
table that matches the encapsulation of the PEDB being processed, taking alllink , network,
transport and application layers into account. If so, as occurs in figure 4 (c), then tables
protocolDistStats , nlHost , nlMatrix , alHost andalMatrix must be updated.

sub−identifier
parameters

probe
parameters

initial
row statustextual description

1,1,3,3ether2.ipv4.tcp.http0,0,0,0

0,1,3,3ether2.ipv4.tcp0,0,0,0

1,1,3,3ether2.ipv40,0,0,0

ne
tw

or
k i

d

tra
ns

po
rt

id

ap
pli

ca
tio

n
id

lin
k i

d
who created?

61 2048 Someone active

6 01 2048 Someone active

0 01 2048 Someone active

80

(a)

(b)

(c)

Figure 4: Examples of encapsulations registered at theprotocolDir table

3.2.4 Integration of the agent to the Net-SNMP framework

The integration between the RMON2 agent and Net-SNMP is done through a module (Wrapper) that
registers several call-back functions. These functions are invoked whenever the Net-SNMP daemon
receives a request (get , getnext , walk or set) referring to RMON2 MIB objects (see flows 4 and
5 in figure 2). The Wrapper module had its basic structure created by a tool calledmib2c (included
in Net-SNMP distribution). The skeleton automatically generated has been populated with functions
that (a) access the data structures developed (detailed in next sub-section) and (b) retrieve/set the
information being requested/informed.

3.3 Storing of Collected Information

This section describes how the statistics that comprise the RMON2 MIB are internally stored by the
agent. Basically, three types of data structures have been used: with direct access, hash function-based
access and cache-based access (detailed in the following sub-sections).

3.3.1 Data structures with direct access

The protocolDir and control tables (protocolDistControl , hlHostControl ,
hlMatrixControl , hlHostControl and alMatrixControl) have been implemented as
vectors with direct access. These tables consist of vectors of pointers, which are used to allocate
specific records of each table. Due to the static nature of these data structures, table sizes must be
configured before compiling the agent.

3.3.2 Data structures with hash function-based access

Data tables (protocolDistStats , nlHost , nlMatrix , alHost andalMatrix) have been
implemented as vectors of pointers whose indexing is done through a hash function applied to a key.
This approach provides fast data retrieval (in the first attempt in general). For each data table there is
a particular way of generating the key that will be used to access or insert an entry in its respective
storage slot. As an example, figure 5 shows both the composition of the key used to access or insert
an entry inalHost and the process of solving table conflicts.

in_pkts

in_pkts

hash(3232629044, 0)

38420

hash(3232629044, 1)

73826
Correct

XOR

(a)

(b)

(c)

192.168.1.100

3232629044

216.239.39.99

192.168.1.100 tcp

tcp aol

http

tcp 6 http 80

Collision(d)

(f)

(g)

(e)

Figure 5: Key generation, access to thealHost table and conflict resolution

To generate the key, aXORlogical operation is performed on the source network-layer address,
illustrated in figure 5(a), and the transport protocol identifier plus the destination application port (b),
producing the key (c). By applying the hash function to this key, one obtain the first vector access
index (d), enabling the access to the table, illustrated in (e). In the example, one can observe that
the entry in position (d) is not the one to be updated (network-layer addresses and application ports
do not match), resulting an access collision. When it happens, it is necessary to calculate the second
vector access index using the same key (c). By passing an offset of 1 as argument to the hash function,
a skip (spacing between the keys) of 35406 slots has been added to the initial index (d), generating
the second index (f). As one can see in the figure, this index will correctly point to the entry to be
updated (g). It is worth mentioning that each key has a different spacing between keys reducing the
probability of collisions.

Had other collision occurred, the previous step would be repeated using an offset of 2, and so on,
until the corresponding entry had been found. After using all possible offsets, it means a new entry
is supposed to be created and inserted in the table. Besides, the value for the maximum number of
collisions must be updated, since the last entry inserted is located after the search limit the agent does.

3.3.3 Data structures with cash-based access

The protocolDir table, beside being directly accessed, has an auxiliary structure that provides
the functionality of a cache. As some encapsulations are identified more than others in the network
traffic, they are promoted and are moved to the header of a double linked list. Hence, encapsulations
that occur more frequently are located in theprotocolDir table in a shorter time (and with lower
computational cost). To speed up the search for encapsulations even more, the table uses three caches,
one for each encapsulation level (network, transport and application).

3.4 Optimizations

During the development of the agent we have put efforts into increasing the processor cache hit rates
(in an attempt to maximize the number of operations that are retrieved from the processor cache mem-
ory). The data structures have been designed aiming at obtaining a better usage of the new features
and resources provided by current processors. For example, currenti686 processors have multiple
parallel execution units, allowing anticipated instruction decoding. Hence, while an instruction is
being executed, the next is decoded, reducing the time the processor has to wait for instruction de-
coding. There are also special parallel execution channels that allow operations on integer and float
point numbers to be executed in parallel.

4 Performance Analysis of the Agent

In this section we describe the performance analysis we have carried out to determine the sustained
capacity of the agent. The experimental setup used to run the experiments are presented in sub-section
4.1. Then we present in sub-section 4.2 the measurements performed (using both homogeneous and
realistic network traffic) to figure out the performance of the agent.

4.1 Experimental Setup

To access the performance of the agent we have used the setup illustrated in figure 6. It consists
of two PCs connected through a cat 5e UTP crossover cable at 100Mbps. The source host has a
333MHz Intel Celeron (Mendocino) CPU and 64MB RAM. Its Ethernet controller is the 100Mbps
3COM 3c905B Cyclone. The operating system used in the source host is the GNU/Linux (Slackware
Linux 8.0, kernel 2.4.20). The destination host (where the RMON2 agent is installed) has a 1.7GHz
Intel Pentium 4 CPU, 512MB RAM, an Intel i845 (Brookdale) chipset host bridge, a 100 Mbps
3COM 3c905C-TX/TX-M Tornado network interface card and runs GNU/Linux (Slackware Linux
8.0, kernel 2.4.20).

Receiver Sender

Figure 6: Setup used to run the experiments

4.2 Measurements

The first experiment consisted of transmitting 1,000,000 UDP packets (with the same protocol header)
from source to destination, at 100Mbps, using the packet generator module provided by the Linux
kernel. This transmission has been repeated 43 times varying the size of the packets generated, aiming
at achieving different packet per second (pps) rates. The purpose of this experiment was to access
the maximum number of packets the agent is able to process and to identify the interference of the
operating system on the agent monitoring capacity.

Packet sizes from 64 to 1472 bytes have been used. From 64 to 224 bytes, the packet sizes have
been increased of eight bytes in each run so that we could identify the maximum agent capacity.
From 256 to 1472 bytes the packet sizes have been enlarged 64 bytes in each run. In figure 7 one
can observe that the agent capacity is highly affected by the heavy system load. From 208-byte long
packets on, the system load allowed the agent to process 58,900pps with a 8.68% loss rate. It is worth

noticing that, although when using 216-byte long or larger packets the system has already some free
CPU time, the agent still loose some packets. It occurs because there is a bottleneck in the deliver of
packets captured by the libpcap to the RMON2 agent, evidenced by the fact that with 960-byte long
packets there was a 0% loss rate (12,700pps), while with 1472-byte long packets (8,355pps) the loss
rate reached 0.0015%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 64 192 320 448 576 704 832 960 1088 1216 1344 1472

P
ac

ke
t L

os
s

R
at

e
(%

)

Packet Size (Bytes)

Packet Loss Analysis (at 100Mbps)

Figure 7: Packet loss rate at 100Mbps

Para realizar o teste com tráfego reaĺıstico, foi necesśario usar uma ḿaquina mais potente para sub-
stituir o transmissor. A ḿaquina adotada como novo transmissor tem exatamente a mesma configuração
do receptor, permitindo que o tráfego fosse retransmitido na mesma velocidade que fora capturado. O
tráfego utilizado está caracterizado na figura 8, contendo 97.6482% de pacotes IPv4 sendo 96.4051%
de pacotes TCP (sobre o total de 1,000,000 de pacotes) e 0.8486% de pacotes UDP, o restante dos
pacotes atualmente nãoé reconhecido pelo agente RMON2.

A perda ḿedia de pacotes nos experimentos realizados foi de 23.9608%. Durante os experimentos,
verificou-se que os picos de utilização de CPU estão diretamente relacionados com o descarte de pa-
cotes. Um levantamento mais apurado indicou que o mecanismo de cache da tabelaprotocolDir
apresenta deficiências quando submetidoà trafego muito diversificado, como ocorre no experimento
realizado, forçando o agente a descartar pacotes. Uma possı́vel soluç̃ao para o problema mencionado
já est́a em fase de implementação, onde o mecanismo de cache será substitúıdo por tabelas hash.

5 Conclusions and Future Work

A MIB RMON2, a exemplo do que ocorre com outras MIBs padronizadas pelo IETF, apresenta uma
quantidade grande de objetos, oferecendo diferentes visões do tŕafego sendo monitorado. Para manter
estas vis̃oes atualizadas em tempo real, para cada pacote coletadoé preciso atualizar um conjunto
numeroso de tabelas. Por exemplo, ao capturar um pacotehttp/tcp/ipv4/ethernet , este
deve gerar atualizações nas estatı́ticas associadas aos protocolos de rede, transporte e aplicação. Estas
atualizaç̃oes demandam um custo computacional elevado, que influencia diretamente o desempenho
da ferramenta (como ilustrado na figura 8).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25 30 35

pa
ck

et
s/

s

seconds

Captured Traffic Analysis

Packet Loss
IP packets

Figure 8: Characterization of the realistic traffic used to access the agents performance

Os mecanismos usados para suportar a monitoração da rede e atualizações dos objetos presentes
na MIB s̃ao cruciais para atingir a escalabilidade necessária para lidar (cope with) com redes de alta
velocidade. No caso da monitoração passiva, intensamente utilizada pelo nosso agente, a utilização
de uma biblioteca de captura localizada em user space torna-se inadequada para atenderà captura de
pacotes a taxas próximas ou acima de 100Mbps. Nosso grupo de pesquisa acredita que uma estratégia
a adotar seria o desenvolvimento de um módulo para o kernel Linux com funcionalidade semelhante
à libpcap, voltado a atenderàs necessidades especı́ficas do agente. Outros pontos de otimização j́a
identificados estão relacionados a um melhor aproveitamento de CPU, como sugerido em [11].

Nossos experimentos apontam ainda que a estrutura cache, usada para melhorar o desempenho
de acessòa tabelaprotocolDir , mostrou-se pouco adequada em determinadas condições (tŕafego
com protocolos muito diversificados), afetando o desempenho do agente. Essas observações nos
levaram a reprojetar sua estrutura interna, substituindo a atual cache por uma tabela hash (já em
desenvolvimento).

References

[1] S. Waldbusser. “Remote Network Monitoring Management Information Base Version 2 using
SMIv2”. RFC 2021, INS, Jan. 1997.

[2] S. Waldbusser. “Application Performance Measurement MIB”. Internet Draft, Mar. 2003.

[3] A. Siddiqui, D. Romascanu, E. Golovinsky and R. Smith. “Real-time Application Quality of
Service Monitoring (RAQMON) MIB”. Internet Draft, Oct. 2002.

[4] Net-SNMP Project Homepage. http://net-snmp.sourceforge.net/.

[5] G. Malan and F. Jahanian. “An Extensible Probe Architecture for Network Protocol Performance
Measurement”. InProc. of ACM SIGCOMM, Vancouver, 1998, pp. 215–227.

[6] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, M. Greenwald and J. M. Smith.
“Efficient Packet Monitoring for Network Management”. InProc. of the 8th IEEE/IFIP Network
Operations and Management Symposium, Florence, 2002, pp. 423–436.

[7] L. Deri and S. Suin. “Ntop: Beyond Ping and Traceroute”. InProc. of the 10th IFIP/IEEE Work-
shop on Distributed Systems: Operations and Management, Zurich, 1999, pp. 271–283.

[8] IPTraf Homepage. http://cebu.mozcom.com/riker/iptraf/.

[9] L. P. Gaspary and L. R. Tarouco. “Characterization and Measurements of Enterprise Network
Traffic with RMON2”. In Proc. of the 10th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, Zurich, October 1999, p. 229–242.

[10] tcpdump Homepage. http://www.tcpdump.org/.

[11] AMD Athlon Processor x86 Code Optimization Guide. http://www.amd.com/.

