Flexible Security Configuration & Deployment
In Peer-to-Peer Applications

André Detsch
Luciano Paschoal Gaspary
Marinho Pilla Barcellos
Ricardo Nabinger Sanchez
Programa Interdisciplinar de Pés-Graduacdao em Comgpatéplicada (PIPCA)
Universidade do Vale do Rio dos Sinos (UNISINOS)
Sao Leopoldo, Brazil

Abstract— The widespread adoption of P2P applications in envi- Third, existing schemes demand a uniform, symmetric behav-
ronments beyond ordinary file sharing demands the fulfilmen of jor of all peers that comprise an application. For some P2P
several security requirements. Important steps have beeraken applications, this limitation is undesirable, since theusity

towards security in P2P systems, with relevant mechanismseing . t ildl it To illustrat
proposed in the past to address specific vulnerabilities. Hoever, requirements can vary wildly among Its users. 10 llustrate

existing approaches lack flexibility, since they do not (inede Using a trivial example, consider Skype, the VoIP applarati
enough mechanisms to) tackle a wide range of requirements in a given peer may establish different kinds of communication

integrated fashion. In addition, they oblige the user/apgkation with other peers, each one with its own security requiresient

to_manipulate a complex programming interface, as well as (g g corporate and home users may have different needs).
going through a cumbersome configuration process. To addres

these issues, we present P2PSL (P2P Security Layer), _/vhichFourth and last, current schemes provide poor or no support
allows gradual and flexible integration of security functinality for gradual deployment, because they need to be available in
into P2P applications. To show concept and technical feasity, all peers of an application. It is very hard, if at all possibl

we have implemented P2PSL, assessed the overhead it induces[. th bruot adopti f it h .
and incorporated the layer into a P2P-based grid computing 0 IMpose the abrupt adoption ol a new security scheme in a
infrastructure. large scale, loosely-coupled system. Instead, we belieat t
it is important for the success of P2P systems to allow the
I. INTRODUCTION coexistence between security-enabled peers and the cates th

Peer-to-peer (P2P) applications have gained widespreageus®'® MOt

in both academic and corporate environments. Although fildis paper presents P2PSL, or Peer-to-Peer Security Layer,
sharing and instant messaging applications are the most wéich allows the inclusion of security functionality intP
ditional examples, they are no longer the only ones to proéipplications and addresses the lackirdgration isolation,

from a P2P design. For instance, medium-sized applicatioasymmetry and gradual deploymenjust mentioned. P2PSL
whose groups are comprised of tens or hundreds of nodes (isglates the implementation of security aspects and thogir ¢
resource sharing [1] and cooperative work [2]), are becgmifiguration from both the P2P application and the underlying
increasingly common. This is also the case in the corporatemmunication middleware. Each peer may specify distinct
arena, where P2P systems allow institutions to excharggcurity requirements (complying with different restoot
services [3]. degrees) for each communication channel established with

Although P2P applications can help provide resource spariither peers. In addition, the deployment of P2PSL by the

and collaboration in a large-scale, wide-area environmeREers that comprise the application can be done gradually.
with decentralized, loosely-coupled control, their daitica- The implementation is based on JXTA [4], a consolidated set

tion and dissemination are hampered by their current lafk Protocols for P2P systems development, which has been
of security. It remains difficult to develop P2P applicationVidely used by the community.

that address multiple combinations of security aspectsgha The remainder of the paper is organized as follows. Section
confidentiality, authenticity, integrity, authorizatioauditing, Il discusses related work on security for peer-to-peeresyst
non-repudiation, reputation, and anonymity. The reasomns fSection Il describes typical P2P applications and theiugy

that are fourfold. First, existing schemes for securing P2Bquirements in environments where security in general is
applications cover only specific (security) aspects (ewg. adesirable. Sections IV and V explain P2PSL and the peer
thentication and reputation) and cannot be easily intedratconfiguration process, respectively. Section VI emphasize
into a single system. Second, they do not isolate the sgcuiinplementation aspects. Section VIl presents performance
aspects from the application. Instead, they oblige the aserresults obtained with the implementation, while Sectiorl VI
the application developer to handle a complex programmidgmonstrates the use of P2PSL through a case study in
interface and go through a cumbersome configuration procegsd computing. Section 1X closes the paper with concluding

remarks and perspectives for future work. [1l. P2P APPLICATIONS AND THEIRSECURITY

REQUIREMENTS
Il. RELATED WORK

The design of new schemes to simplify the developmelmt this section, we consider security requirements of P2P
and deployment of secure P2P applications is of paramo@mplications. The inclusion of security functionalityardppli-
importance to expand their use. There have been attemptsations is a hot topic in P2P research ([3], [10]). This conce
achieve that, such as JXTA and PtPTL — Peer-to-Peer Trustedueled due to (i) the variety of attacks P2P applicatiores a
Library [5]. JXTA provides functionalities like encryptip intrinsically vulnerable to [11] (e.g. identity theft by antho-
signatures, and hashes for the development of secure Ped or falsely authorized parties, privacy invasion,slag
applications. However, it obliges the programmer to exific data integrity, and repudiation of previous transactipasid
include and handle security-related code, leading to mahdit (i) the interest of applying this technology in more imgont,
development complexity. PtPTL, on its turn, is an OpenSSkerious activities, such as the ones related to businedwin t
based API that allows for the establishment of trust betweenterprise.

individual peer-to-peer nodes as well as the creation ojrsec In Figure 1, we estimate the relevance of the main security
groups of trusted PEErs. Both JXTA and PtPTL are resF”F'ftGdr‘equirements for typical P2P applications, assuming tlaese
relation to the security mechanisms supported: authditita | ,qe iy 4 restrictive context. Because of the relative ripvel

confidentiality, and integrity. When interested in empi@/i ¢ yhe topic, our assessment in Figure 1 works only as a guide
other mechanisms such as non-repudiation, authorizaion, ¢, the identification of security requirements.

diting, and reputation, the application developer has atmo
support from the mentioned schemes.

The same limitation is observed in most (if not all) of the
work on P2P security. Kim et al propose in [6] an approach to
control peers joining a P2P group. The approach is compriseypicaton categories Application examples

Confidenciality
Non-repudiation

§ 2
®© E
s 2
g 2
x <

Authentication
Integrity
Authorization
Auditing

of two componentsGroup CharterandGroup Authority The Instant messaging ICQ, Jabber

former is a digital document that informs the rules for a c,emshaing Napster, Gnutela L

peer to be accepted in a group while the latter is responsible Publs, Freenet

for enforcing these rules. AGroup Authoritybehaves as a pitibued compuing SET'%H;"T: .
certification authority, emitting certificates stating lner a GL:OO\r/Ie Il High
certain member is authorized to join a given group or Notk Par cyiaporaive compuing Consiient %t":;"“m
et al define an access control architecture for P2P appitati Skype, NetMeeting [] None

based on RBAC (Role-based Access Control) [7]. The authors
propose a generic middleware, which operates much like a Fig. 1. Potential demand for security in typical P2P appiice.
service directory, indexing the resources available inptber-

to-peer network. A peer interested in providing the networdﬁbserving Figure 1, notice that authenticity and integciay

with a service (or resource) is supposed to register it i the jmportant to all applications enumerated. Guaranteeing
middleware. Access poI|C|es are also stored in the m'ddle-"vaconfidentiality is also relevant in applications where até
Whenever a peer wishes to access a service or resourcgyfirmation is exchanged in the communication. Distriklute
sends a request to the middleware to find out which pegsmputing applications pose more extensive security requi
provides the service .and if it is entitlgd to thg desired lserv ments, since they comprise the use of resources belonging
In both papers, two important security requirements r@ivyy several administrative domains (e.g. SETI@home [12] and
s_pecial attention: auth_enticatiqn and authqrization. B\®Y, OurGrid [1]). Strong access control to resources and the
like before, these are isolated implementations that dabeo possibility to audit system execution are particularly anp

easily extended or integrated to other security mechanismsant in this context. Content sharing applications may have
Regarding configuration of security in P2P applicationss it different security requirements, depending on their psepo
particularly important to adopt more flexible, decentradiz While applications such as Gnutella and Chord demand access
and close-to-user security mechanisms (machine user its tygontrol and a reputation scheme to avoid misuse (e.g. free-
cally also the administrator) due mainly to scalability cems. ride), Freenet [13] and alike aim at preserving anonymity to
It is not the case of the aforementioned work ([6], [7]), whic content provider peers. Despite the need for rigid authenti
require policies to be stored and maintained in centralizedtion, integrity, and confidentiality, collaborative cputing
servers. Approaches proposed by the web service [8] and gajgplications (e.g. Groove [2], Consilient [14], Skype [15]
computing [9] communities, in spite of their generality andre less demanding in relation to other security aspects. At
completeness to secure loosely coupled distributed sgstemast, instant messaging applications (e.g. ICQ [16] andbdab
also fail in this regard. They still depend on a great defl7]) have the lowest security requirements (when compared
of configuration, which is often performed in a centralizetb the other application categories mentioned), but thi wi
manner. vary according to the nature of the remote meeting.

IV. P2P SECURITY LAYER (P2PSL) may perform changes in the message according to the security
In this section, we describe the components of the PZPé quirement being enforced; this is the case in the example,

layer. First, we discuss how security modules are combingd < & signature is added. Incoming messages, on thejr turn
ayet. e . Y . .. are passed to the digital signature and cryptography medule
like puzzle pieces to provide flexible, asymmetric secuntg{lso according to Profile B. If the message goes through
Then, we describe the characterization repository, whadsd successfully, it is deIivered. to the application. Otheswis
the mapping between modules and security requirements. L . ' - '

' . . . %Slgpendmg on the characteristics of the module, the message
we show how a configuration repository is used to keep track . .
. . o |sds|mply discarded.
of security requirements specified by both remote peers an

the local one.

P2PSL is based on the addition of a security layer whic
is implemented and configured independently from both the
P2P application and the underlying communication middle-
ware. The security requirements are satisfied by modul i
that implement different security techniques. In line with \DiG“ﬁ‘S‘g"a‘:feM"d“'e\\D‘g"a's'g‘"a'”fw°d“‘e\§
the intrinsically decentralized nature of P2P applicaticthe | —— |
definition and configuration of modules to be employed i

done autonomously in each peer by the local user (helped
by a graphical interface, as explained later). The configuma

of the security layer is based qofiles each one serving
different security needs. So, known peers can be groupedAin Security modules
one of the predefined profiles; peers unknosvmpriori are
automatically placed in a default profile.

\ P2P Application

i Profile B {Peer3}

Configuration

Cryptography Module

Fig. 3. P2PSL instance in a peer.

The security modules are the key pieces of P2PSL. Each
) _security technique implemented is represented through one
Figure 2 shows an example of a network of peers usiRg ihese modules. For example, the message auditing support
P2PSL. The configurations for Peer 2 and Peer 3 are shownypically implemented through a log generation module;
in detail. To illustrate, consider Profile B in Peer 2, whichihentication and message integrity, through a digigrasi

specifies that authentication must be applied to all oUmOIR,re module: and access control to resources (authonatio
messages, and authentication and confidentiality are dm“a”through verification of access policies.

for all incoming ones. Peer 2 then associates such profile w. I o
9 P .llthe modules are based on the utilization of a generic interfa

Peer 3, which means that Peer 2 will employ and require . o : .

- - . ich allows the addition of new modules in a simple manner.

authentication whenever communicating with Peer 3, as wi e . .
ach module has methods for the verification of incoming

as confidentiality when receiving from it. messages and for the preparation of outgoing messages. When

P invoked by the security layer, the module does the procgssin
P2P Network Inciming: Authenticaton + Acdtng needed (possibly changing message contents) and retwns th
Profile D . . .
‘ Peer 1 ‘ ‘ Peer 3 Ougong Autentcaton status informing whether the operation was successful br no
P2PSL P2PSL ¢ o
“ - Profile C: Peer1, Peer2 . . .
Profle D: Peerd B. Characterization repository
Conceptually, the security modules differ among each other
eer . . oy . .
- in regards to input parameters and utilization dynamics. An
S|
ash & L. independent repository is used to handle such heterogeneit
Profile A and avoid integrating directly into P2PSL the charactessf
Outgoing: Authentication - - P
orote gncfmmg:Aumenncanon = Authentication (e.g. digital signing) each idealized module. The repository is implemented tjinou
Ougang:Aubentcaon | ity Confidenciality (&.9. ryprograpry) an XML file, which contains the characterization of avai@bl
* Authorization (e.g. policies checking) .
Profie A: Peert, Peerd " _ modules. It defines the parameters and the usage of each
Profile B: Peer3 Auditing (e.g. log generation)) .)
module, as well as the combination of modules that fulfill
Fig. 2. Network of peers using P2PSL. each of the security requirements.

The parameters of each module must be configured so that
The P2PSL instance associated with the peer during systitrbehaves properly. Examples of parameters are the identifi
operation behaves like a wrapper between a P2P applicataation of a key to be employed in ciphering or in a digital
and the underlying communication middleware. Whenevsignature, the level of detail to be used in a log generation
messages are received or sent, the selected modules napelule and the pathname of a file with access policies for
triggered to guarantee the security requirements estadolis an authorization module. In addition, some of the pararseter
Figure 3 illustrates this process, where Peer 2 employsl®rofipecified locally can be important for other peers in the
B to send to and receive from Peer 3. In this example, outgoingtwork. For example, if a peer wishes to encode a message
messages are passed to a digital signature module. A modidng asymmetric cryptography, it needs to know in advance

the key employed by the destination peer. Such informationéxplained. Lines 8-17 specify parameters. Lastly, line224
negotiated through a configuration protocol (see Sectian Vjllustrate the mapping between the set of security requargm

P2PSL associates four basic characteristics (Spec|fw|5f|ed and the eXiSting mOdUleS; there, it defines thafi-con
through attributes) for each module. The first attributdentiality is obtained through PgpEncryption.
(export _requirement) specifies if message changes
must be performed at the sender or not in order to allgwi <static features>
the module to be used at the receiver. For example, |in <modules> . -
modules that involve techniques like authentication and <module name=PgpEncryption

; 4 export_requirement="true"
cryptography, the outgoing message needs to be changed obligatory_if_applied="true"
in order to allow the recipient to apply the technique whens allow_on_bcast_sending="false"

. . . discard_on_failure="false">
the message is received. On the other hand, with modules <paramete'rssc>ar —ontature=taise

such as the log generation and the verification of access <parameter name="public_keys_file"

policies, the original content of the message is enough default=""/.gnupg/pubring.gpg"/>

to apply the technique upon receipt. The second attribygg ~ “Parameter name=isecret_keys_file
_ppy - q) p S pt. tl? default=""/.gnupg/secring.gpg"/>

(obligatory ~ _if _applied) indicates whether or not|is <parameter name="my_encryption_key_id"

it is mandatory to apply the module when the messag@ default="""remote="true"/>

. . - . [15 <parameter name="pass_phrase"

is received to recover the original data. This is the casg default=""/>

with cryptography modules, but not with authentication, as: </parameters>
the latter only adds a signature to the message. The thitel :/m%dul'” PabSianature"s. </modules
. . 19 module name="Pgposlignature™>...</modaule
a_nd fourth att_rlbutes allow _on_bcast_ _sending a_n(_j_ 2 <module name="Log">...</module>
discard _on_failure) regard, respectively, the possibility| . <module name="PoliciesChecking">...</module>
of employing a module in broadcast transmissions, and tte :/mOd,U'eS> .
. . . o .1 23 <requirements
need to discard a message when it fails the verificatio] - equirement name="Confidentiality">

process upon receipt. 25 <option>

The repository stores, besides parameters and attribdteg 2y _-oPtonmodule name="PgpEncryption’/>

.) 2r <loption>
each module, the mapping between requirements and securiy </requirement>
modules. Note that this mapping is not 1:1, since a module dan -
serve more than one security requirement, and a requireméh{/eduirements>

. y req . ! q . 31 t</static_features>
can demand multiple modules. For instance, the combination
of modules for verification via SHA-1 hash and another for Fig. 4. Example of module characterization.
signature of this verifier represents an option of message
authentication. The following items map the most relevant
security requirements addressed in Section Ill and examp,

of techniques that can be employed in P2PSL:

« Confidentiality PGP cryptography, RSA cryptographyThe configuration repository contains all the informatien r
RC4 cryptography; quired by the security layer to properly employ the modules

« Authenticity PGP signature, RSA signature, RC4 crypspecified by the user. The repository is implemented through
tography, Message authentication code, SHA-1 hashan XML file and its main role is to store the configuration
PGP signature on digest, SHA-1 hash + RSA signaturegarding each profile. Notice that the security requiresen
on digest, SHA-1 hash + RC4 signature on digest; and modules to be applied are specified independently for

5 Configuration repository

Integrity. PGP signature, RSA signature, RC4 cryptograacoming and outgoing communication channels. Figure 5
phy, Message authentication code, SHA-1 hash + P@rovides an example of profile representation; it refers to
signature on digest, SHA-1 hash + RSA signature dProfile B of Peer 2 shown in Figure 3. Besides the profile
digest, SHA-1 hash + RC4 signature on digest; definition, the XML file contains the list of remote peers and
Authorization RBAC-based access control; their requirements, as well as standard settings for theutesd
Non-repudiation On-line service for evidence generalocally available.

tion/verification, PGP signature + time-stamping, RSAn important attribute set for each profile is named

signature + time-stamping; respect _remote _requirements (as indicated by line 2
« Reputation Debit-credit reputation, feedback-based regy, Figure 5). When this attribute is enabled, requiremeiits o
utation, credit-only reputation. remote peers (i.e., security modules) are automaticatiigfieal

Figure 4 shows as an example parts of a characterizatimsing corresponding modules) when messages are exchanged

file

(in XML). Lines 2-22 indicate the security moduleswith peers belonging to the corresponding profile. Note that

available. The definitions regarding the PgpEncryption ut@d the set of modules applied will be the union of modules Igcall
are shown in detail. Lines 3-7 define the usage charactevistspecified by the profile and the ones demanded by (a profile
of the module, setting each one of the four attributes preshio in) the remote peer.

1 <profile_ name="ProfileB" _ I primitives, namelysend (unicast),receive and broadcast to

: <inc0minéefé’ssitr—erﬁ:gr?tf;requ'remems’ true’> be provided by the underlying middleware, JXTA (so, the

a <requirement name="Authentication"/> semantics for those primitives follows JXTA).

Z <,i:£§?#'r:gmrzghi:':r;n;:tsgonf'dem'a"ty > The protocol is described below through an example, which

7 <outgoing_requirements> is illustrated in Figure 6. We assume, for now, there are no

8 <requirement name="Authentication"/> failures in the P2P network, and discuss later assumptiods a

N :{ﬁgégn?i'ggg-;‘fg;ﬁ?>ents> implications about faults. Let Peer 1 be the peer that etthers

1 <module name="PgpSignature"/> network, and Peer 2 and Peer 3 peers that are already active.

2 _<module name="PgpEncryption"/> Assume further that Peer 2 knows about Peer 1 and has a copy

e :gﬂfgg?r:ggﬁq";%iﬂif of its public key, while Peer 3 and Peer 1 did not know about

15 <module name="PgpSignature"/> each other. The protocol works in three steps:

13 :i)?létfﬁngge_eT_on(iglriins> 1) Peer 1, entering the network, broadcasts a sigred

18 <prpfi|e_peer_member name="Peer3"/> quirements requeshessage.

o </p<r$ir|g‘l'e—pee'—members> 2) Peer 2 receives the message, checks the signature, and
immediately replies to Peer 1 witRequirements request

Fig. 5. Example of profile configuration. and replyspecifying its requirements towards Peer 1 and
at the same time asking Peer 1 about its requirements
towards Peer 2. Peer 3 also receives Rexjuirements

V. PEER CONFIGURATION requestmessage but is unable to check it. Peer 3 fetches
from the CA the public key of Peer 1, verifies the
message from Peer 1, and assuming the message is

correct, sends Requirements request and repdyPeer 1

(similarly to Peer 2).

Peer 1 verifies the signatureRéquirements request and

reply received from Peer 2. Assuming the message is

correct, Peer 1 sends an individiRgquirements replip

Peer 2 containing its own requirements towards Peer 2.

Peer 1 does similarly for Peer 3, but before replying it

needs to fetch the public key of Peer 3 from the CA.

P2P networks are expected to be dynamic, heterogeneous and
asymmetric in terms of security. Because of these propertie

it is unfeasible to manually configure the security layer of a
peer in regards to every other peer. P2PSL tackles thisgmobl 3)
in two ways. First, it lets users to classify peers accordog
profiles (as presented in the previous section). Second, the
security layer includes mechanisms that guide and automate
the configuration process, allowing a large number of peer
relationships to be managed effortlessly.

In this section, we build on the description of P2PSL and
present the three differentonfiguration momentghrough
which peers go through during their lives: (i) an initial .get a

that precedes the activation of a peer, (ii) a hegotiatioerwh
the peer enters the network, and (iii) configuration adjesiis Requirements req. and reply
that occur in response to P2P network changes. Each one i
detailed below. ‘

The first moment refers to the initial setup. Before a peer —————
with P2PSL is run, it needs to create a pair of keys and

publish the public one. This is required to provide autreityti ‘
and integrity incontrol messages exchanged by peers. The |
creation of a pair of PGP keys can be done using a tool
external to P2PSL, like GnuPG or Kgpg. For publishing, there

are two alternatives: one is _tO use PGP in a dece_ntrahz,g& 6. Time diagram representing discovery of requirem@ftother peers.
manner, whereas the other is to employ a centralized CA

(Certification Authority) server. The latter is adopted iaro ggme of the messages in response to the broadcast may
case study. Whenever a peer receives a message signed ¥ifie from previously unseen peers. As already mentioned,
an unknown key, it enquires the CA about the public key ghe authenticity of messages is ensured by means of digital
the corresponding remote peer and stores it locally foh#urt signatures. If a peer, at any moment, receives a messagslsign
use. with an unknown key, it sends a request to the CA to fetch the
When a peer ingresses a P2P network, it needs to find abooitresponding public key. In the example, Peer 3 did not know
other active peers. As far as P2PSL is concerned, a peer nesatsut Peer 1 and therefore needed to fetch the public key of
to determine the set of security mechanisms demanded Bger 1 from the CA. Likewise, Peer 1 did not know about
each other peer it wishes to communicate with. This corrBeer 3, and consulted the CA as well. If a signed message
sponds to the second configuration moment. The protocol thateived does not match the expected digital signaturgabe
drives this communication relies on three basic commuiainat will ignore it. In addition, it places peers that (consigtgn

Requirements

request (broadcast)

Requirements reply

Requirements

send invalid messages in a profile associated with banned V1. | MPLEMENTATION

peers, and hence refuse any further communication with .thelgﬁZPSL was implemented in Java, using JXTA ([4], [18]) as

Peers that were unknown previously are at first deemed yRe underlying communication middleware. JXTA is a project
trusted and automatically placed in one of the two predefingtht aims to establish a set of implementation-independent
profiles, as follows. Théegacyprofile refers to peers that doprotocols that allow the creation of a general-purpose P2P
not have the security layer implemented or properly conéidur structure, which can be employed by different applications
(e.g., with an invalid digital signature). Thaefault profile More specifically, the implementation was based on the JXTA
refers to peers that implement the security layer and pessesAbstraction Layer (JAL - [19]), a library whose main goalds t
valid digital signature, but were previously unseen by fiésr ease the development of P2P applications on top of JXTA. JAL
(e.g., first time the peer encounters this peer id). Recatlith abstracts several aspects of the JXTA architecture, offeri
Figure 6 we assumed that Peer 1 did not know about Peettde programmer a simpler interface to access common func-
In this case, Peer 3 is associated with the default profile. tionality in P2P systems, like message transmission (shica

So, at the end of the second configuration moment, a p(_?érb_roadcaSt)’ c_reation _Of groups or resource search. JXTA
will have determined the set of requirements (modules to ke Widely used in a variety of projects and research work,
applied locally) when sending to or receiving from everyesth allowing our implementation to be useful for several erigti
peer it wishes to communicate with, and will have told thesyStems.

peers which are its own requirements. Figure 7 shows the P2PSL implementation overall struc-

The third and last configuration moment refers to the changt e. lts main piece is clasSecurePeer , which acts

P e securtyconfguraio of a peer, i can rappen &% 96PS1 At Tiereene mossagos b sert o (o
any time during its life. This is more likely in long-lived y peer. P

applications, where there is enough time for new peers tmcoﬁecuntyModule , Which offers a generic access interface

in or existing peers to change their own requirements. Ifrso, at 'S employed by cIas§ecurePeeTr. ' The methods n
%SecuntyModuIe represent the verification of each incom-

reciprocity, a peer may wish to update its own requiremen .) .
towards another peer. This would be typically achieved 4y9 and outgpmg messagee(rlfylncomm_gMessage . and
djustOutgoingMessage , respectively) to see if they

moving a peer from one profile to the other. It is also possible™,. . -)
to change the requirements associated with a profile, the Oj%ny the requirements specified. The access to the medule
c

which the remote peer belongs to, but with consequences 1€ slole(;)_/ thrPUthQ'Si ggnirlc;pttgrfaci. Aloli]g Wt|:1h dyina it
the other peers as well. ass loading in module instantiation, it makes the seguri

layer extensiblenew modules can be added without having to
The introduction of new requirements affects other peefscompile the rest of the layer.
and needs to be communicated to them. When a peer, say,

Peer 1, changes the set of requirements towards another peer | A Romieaton |
say Peer 2, Peer 1 sends a message to Peer 2 informing :
the new requirements. If the set of requirements regarding
Peer 2 is augmented, messages sent by Peer 1 to Peer w S ‘W ;Sf
would be affected immediately. To allow a graceful increafse duh
requirements, a transition interval can be specied by tee us , opousnatiesssesd
temporarily delaying the application of restricting measu |

)
broadcastOnPropagatePipe()

)
broadcastOnPropagatePipe()

EZMinimalPeer (JXTA / JAL) ‘

In the description above, we assumed there would be no
failures in the network or in the peers. Now we consider Fig. 7. P2PSL implementation.
some of the most common types of failures that can happen

in a P2P system, and how P2PSL is affected by them. FirstAa
peer may fail to receive a response t®Raquirements request
message from an active peer due to a network-related faillfreur modules were implemented to provide the following
(partition). To handle this problem, a peer needs to emplegcurity functionality: authentication, confidentialiiytegrity,
timers to prevent indefinite waiting. A peer that fails topesd authorization and possibility to audit message exchanga N
will not have its requirements registered and, therefori, wmodules can be added with no change or source-code recompi-
remain in the default or legacy profiles (considered unsdf#ion, such as when incorporating a new security mechanism
for communication). So, the waiting timer needs to be longr choosing an alternative technique more suitable for argiv
enough, since in case of peer or network contention, theghrriscenario. In line with P2PSL philosophy, the modules were
of messages can be arbitrarily delayed. Further, a peer miayplemented such that peers that do not have the security
crash, in which case other peers may have to limit waitingyer can still participate on the system. This allows a gedd

for messages. Finally, P2PSL has no support for Byzantiadoption of the security layer in operational P2P systemd, a
failures, when a (potentially trusted) peer starts belmvigives the user of each peer the choice of employing or not
arbitrarily during operation, maliciously or not. the layer. Incidentally, peers that implement P2PSL caclblo

Available modules

messages sent by peers that do not have it by requiring, fimn about the exchanged messages. Examples of information
example, message authentication from those peers. Next, ave the instant of each event, characteristics of messamgks a
present the modules that were implemented. information about peers taking part in the communicatidre T

PGP signature The PGP signature module aims to ensure agUtput is di_rected to a_filg estab!ished during configuration
thenticity and integrity of message exchanges betweerspedfirough this module it is possible to audit the message
In this model, public keys are stored in arbitrary servers, §xchange, identifying problems in the way the applicat®n i
even exchanged directly between the interested parties. fnctioning or being used.

implemented module checks existing public and private keys
locally available in the node where the peer runs. These keys
can be managed through applications already consolidateyl ease the task of adjusting the configuration repository,
like GnuPG and Kgpg. The private key used is establishé@scribed in Section IV-C, a Graphical User Interface (GUI)
previously by the user (through an input parameter), and tReprovided. This GUI or front end is activated during thepee
generated signature is added to each message sent usirgrdiguration process, described in Section V. For eachlgrofi
specific field. When messages are received, the signaturenis user specifies the aspects to be met, and then determine
verified through the corresponding public key. If the sigmat the combination of available techniques to reach the disire

is valid, the message can be forwarded to other modulesgwal.

delivered to the application. Otherwise, and if the peer W@Squre 8 presents a snapshot of the tool with the security
configured to require authentication, the message is disdar ,ije configuration screen, where parameters can be sbcif
'!'he gener_atio_n of signatures is based on_the BouncyCaslle [, a2 module (in the case shown, a PGP signature). Once
library, which implements the PGP algorithms. Note that PGE 1 jeted, the established configuration can be writtehéo t

allows the use of different signature generation algorghmy,, file stored in the configuration repository and intergt
like RSA and DSA, as well as the specification of the ke%y the security layer.

size. Both characteristics are specified when the pair o key

is Created & Configieidaninsirfiss
PGP cryptography. Like in the previous module, this one E;H 7

employs the facilities provided by PGP to guarantee me M e
sage confidentiality. The PGP cryptography module avalak — ‘

Configuration assistant

Profil Incomming

extracts from the outgoing message all fields inserted Profiea e Hodul

the application, and then generates a byte array which| | i AL R R

cryptographed and inserted in the message in a specific fie | 5oy, Contdatinity

When it is received, this array is deciphered, and the fiel| | *™ Auditory AT

of the original message are reconstructed and reinsertix in —— public keys fis: [~/ gnupglpubring opg |

message, so that it remains transparent to the applicéiice. Requrements— -Madules——| secretkeys. e [/ npgiecngap |
. . . Authentication PgpSignature | my_signing_key id: [7199103DADFL3SEC |

lt_f;)e signature n;odule, routines provided by the Bouncy€as gy O e |

ibrary are used. autnorizatan

Verification of access policies Aiming to provide access Nl & =D

Remove| Add [X] Allways respect remote requirements ‘

control to resources (authorization), the module for polic
verification uses generic information in the message (lited
message size and sender identification) to define if the messa

can be delivered or not. Specification and verification of-pol Fig. 8. GUI provided by configuration assistant.
cies are based on XACML [21], a standard created by OASIS
for the definition of access control policies through XML.€Th
policies are defined classifying the peers in roles, folfaythe
Role-based Access Control (RBAC) mechanism. Hence, tWine need for security, particularly in corporate applicas,
distinct repositories are established (both implemertealigh is clear. However, the required security mechanisms to be
XML files): one for the specification of access policies, anthcorporated into a P2P application will introduce ovedeea
other to fit the peers in the defined roles. Whenever a messddgs section presents an experimental evaluation with the
is received, the roles played by the sender are determineglementation of P2PSL. Our aim was to use this imple-
and the current policies consulted, based on the informatimentation as a proof-of-concept of P2PSL as well as make
relevant to access control. This query is processed usig theasurements of the latency overhead induced by the securit
Sun XACML library, and returns as result whether the acceksyer.

can be granted. If access is not allowed, the message ifigilegxperiments were conducted using a synthetic load in omder t
discarded. Refer to [22] for further details on this module. jspjate and measure the overheads of P2PSL without modules
Log generation When used, the log generation module creand of each module individually. They were performed in a
ates, according to a preset level, a trace that presentsriafo 2.4 GHz Intel Pentium4 CPU with 1 GB RAM. Although we

4

VIl. EXPERIMENTAL EVALUATION

investigated different choices for algorithms and key siéggu no variation regarding message size. As expected, the PGP
parameters, we report only the main results here. To obta&incryption module induces a very high overhead per message,
statistically sound results, each experiment was repe#®8d whose average reaches alma@sb ms when ciphering mes-
times. Adopting degree of confidence of 99%, the confidensages ofé4 KiB. The overhead will depend on the key size;
interval seen for any experiment was no larger than 0.88the experiments shown, we chose to U824 bit. The PGP
(milliseconds). signature module also induces substantial overhead, irepch

Message size is expected to play an important effect into thgms for the generation and verification of signatures in
performance of the security layer, and so the experiments w&€ssages af4 KiB. The module for access policy verification
conducted using message size as a factor: 1, 2, 4, 8, 16,(iggeiver only) presents low overhead, between 10 ldinahs
and64 KiB of data, with randomly-generated contents. Figuf@' & single rule, but the delays will be larger according to
9 shows the average latency results for transmission (a) 4§ number of policies to be verified. The module for log
reception (b) of messages. The values shown in the plots re§gneration induces a small overhead, unglers, regardless

to P2PSL configured with no security modul&sr(pty Laye), of message size, .because in the experiments the level df deta
and to each module isolatedli§PgpSignature, PgpEncryption, Was set to “medium” and thus message contents were not
Logging, and PoliciesCheckinp written to the log.

Overall, individual delays were large, typically withinn or
hundreds of milliseconds per message. These delays should

512

ngEncr‘yptlon —_—

P not be considered alone, but instead combined, since a given
256 Loaang B P2P application is likely to employ multiple security moeis!
/ In the worst case scenario, if all modules were employed and
128 e

messages were df4 KiB, total delays per message would
reach491 ms, that is, aroun@88 ms for sending plu03 ms
for receiving.

""""" For some applications, such delays would be unaffordable,
such as in interactive P2P applications. However, this kind

-3
R

Overhead (ms)

w
R

I Sa— : of application tends to use small messages (less 1H&iB),
in which case the worst-case delay would be almost halved,
8 around272 ms (153 ms for sending plusl19 ms for receiv-
| ing). Even so, with such a delay, the maximum transmission
4l 5 . o " - s capacity would be limited by the sender to $iKiB-messages
Message Size (KB) per SeCOHd
(a) send

Hence, the choice of modules for a specific peer will be
limited not only by the existing module implementations,

512

PpEnchpton —— but also by the processing capacity available for this P2P
256 PIEmz‘L:Egyg ~a- | application in the node. On the other hand, the processing
delays introduce inherent costs that have been long assdcia
128 with implementing security. The above study highlights the
— importance of flexibility and autonomy in choosing which
64 modules a peer will employ.

VIIl. CASE STUDY. P2PBASED GRID COMPUTING

32

Overhead (ms)

--------------- G, L B In this section we introduce a case study, which has been
carried out to show both concept and technical feasibilfty o
our proposal. We have incorporated P2PSL into OurGrid [1],
a P2P-based grid computing infrastructure.

16

al The motivation for choosing OurGrid in this case study is
1 2 4 8 16 32 64 . . "
Message Size (KE) twofold. First, although it has a mature software impleraent
(b) receive tion and is being deployed in production environments [23],

it currently lacks a robust security infrastructure, alilogy
various kinds of attacks or misuses of the system. Second,
grid computing infrastructures demand several security re
irements, as claimed in Section Ill, which allows us tesdr
e security layer.

The remainder of the section is organized as follows. First,
Inot including the empty layer overhead we introduce OurGrid and present an overview of its openatio

Fig. 9. Overheads induced by the layer alone (no modules)bgneach
module individually (no layer).

Examining the figure, first notice that the empty layer tak
around20 ms in both send and receive operations, with almo

protocol. Then, we describe how P2PSL has been incorporated Peer2 | |Peer3

. ConsumerQuer

into OurGrid and illustrate the instantiation of a secured ey ()
grid infrastructure. By deploying such a setup we aimed to Negotiation | | ProviderWorkRequest ()
assess the behavior of P2PSL regardirtggration isolation, [———ProviderWorkRequestAck 3) |

asymmetry and gradual deploymentFinally, we assess the
overhead induced by P2PSL in the execution of a real grid

Preparation for Execution (4)

Task initialization

application. ———Ren@
Task execution
. . . It (6
A. OurGrid and its operation protocol RunResull
— . . o Results Retrieval (7)
OurGrid is a P2P-based middleware that enables the creation Finalization
of a multi-organization grid computing environment for the ——[NoMoreGMs®) | |

execution of bag-of-tasks applications [1]. Each orgaiora
in an OurGrid network has eepresentative peeas well as a
task schedulerwhich manages the local resources. The peer Fig. 10. Protocol used by OurGrid peers to execute tasks tesyno
acts like a “broker” on the P2P network, trying to amass

remote resources whenever local ones are insufficient te ser .) o
a request. characterize a subset of the complete scenario consisting o

rfour peers — namely Peer 1, 2, 3, and 4. Figure 11 illustrates
Bﬁe simplified scenario. Peer 1 represents an institutiah wi
%%mputational tasks pending to be executed and without-avai
. i . aBIe resources to run them. Peers 1, 2, and 4 execute using the
capacity locally available, its peer broadcastansumer- . : :

ge urity layer. While Peers 1 and 2 were configured to allow

uery request message to the remaining peers (messa S
.Q yreq g . g P (grr%u ual communication, Peer 4 was setup to block messages
in the figure). If any organization has idle resources thg’I

The main interactions of the OurGrid operation protocol a
illustrated in Figure 10. When the demand for resources
users at an organization (say, Peer 1), exceeds the compu

satisfy the requirements of the set of tasks to be execut 1om Peer 1. Table | summarizes the configuration of the peers

the request is replied with BroviderWorkRequesiessage at.“.m PZPS.L' In this scenario, we ran several jobs related
to bioinformatics.

(2). In the example shown in Figure 10, organization 2 raplie
to the request, while organization 3 does not. Upon recgivin (Ourgrid P2P Network N
one or more replies, Peer 1 chooses the organizations where

each task is gori)ng to be executed, sending %heﬁrcnvider— ﬁ
WorkRequestAckiessage (3). For the sake of simplicity, the

example shows a case where there is a single task in the
set. Peer 1 then starts to exchange messages with the pee

representing the chosen organization (Peer 2 in the example
in order to prepare the execution of the task (4). This phase 7» N

W

of the protocol comprises both the creation of a temporar A

144

b g4l

space at the resource to run the task and the transfer o _)
necessary executable and data files. The task is then run (

Once finished (6), a new phase takes place during which th ol suenicaton Q Idle resources
resulting data is retrieved (7). Finally, after all tasksvéna EEZKZZS:V (@) soesaes
been concluded, Peer 1 sends a broadcast message to other Auciting

peers informing that the idle resources are no longer needed
to Sat'Sfy the request |n|t|ally sent (8) Fig. 11. Simplified view of case study scenario.

B. Instantiation of a secured grid infrastructure We were able to observe P2PSL enforcing policies defined

As OurGrid communication relies on the JXTA/JAL classedy the user of a peer. For example, P2PSL running in Peer 4
its adaptation for P2PSL required only the replacemediscarded messages departing from Peer 1, due to a policy
of the classEZMinimalPeer (provided by JAL) by the defined in the former. We could also experiment with the
class SecurePeer (made available by P2PSL). Sinceconcepts ofintegration employing several security aspects
SecurePeer extendsEZMinimalPeer , all methods avail- using a single system, amdymmetryspecifying a number of
able inEZMinimalPeer remain available irsecurePeer . profiles for each peer and confirming that they were correctly
Therefore, no changes in both the application and the upderdpplied in every communication channel between peers.

ing communication middleware were needed, making evident

the isolation property of P2PSL. C. Overhead assessment

Having incorporated the P2PSL into OurGrid, we instantiatdJsing the same setup just described we have also assessed the
a real setup comprised of a dozen peers. For simplicity, wemmunication overhead induced by P2PSL on the execution

TABLE |

One can observe from the table that the overhead induced
CONFIGURATION OF THE PEERS RUNNINAP2PSL.

by the security layer in the communication between Peer 1

Peer 1| Profile A and Peer 2 ranges from 35% to 55%. On the other hand, in
?Utgo"‘g AUthe’;]tiC)a“O” (dPGP Zignature) * Co)”ﬁdemia"y messages exchanged between Peer 1 and Peer 3 the overhead
PGP criptography) + Auditing (log generation .
Incoming Authentication (PGP signature) + Confidentiality correqunds from 8% to 11% of the total Communlcatl(_)n cost.
(PGP criptography) + Auditing (log generation) t+ These differences are explained by the security requirésnen
Authorization (RBAC-based access control) employed in each communication channel (restrictive in the
Profile B former and relaxed in the latter). The overall delays indiobe
Outgoing Auditing (log generation)] . y R
Incoming Auditing (log generation) not affect substantially the performance of the applicatiin-
Profile A Peer2 ning on top of OurGrid, considering the parallelism achéeve
rorile A: Feer
Profile B- Peer 3 Peer 4 in its execution and the predominance of task processing in
Peer 2| Profile C relation to message exchange times.
Outgoing Authentication (PGP signature) + Confidentiality
(PGP criptography) + Auditing (log generation)
Incoming Authentication (PGP signature) + Confidentialiy IX. CONCLUDING REMARKS
(PGP criptography) + Auditing (log generation) + o
Authorization (RBAC-based access control) The diversification and dissemination of P2P applicatigps;
(F;fotf”e_ D Auditing fion) cially in scenarios where extensive security requirememnist
utgoing Auditing (log generation - . . .
Incoming Auditing (log generation) be satlsfled (e.g. enterprise co_nten.t shanng. and distidbut
computing), depends on the availability of flexible appius
Em;i:e gf ';eerl beor 4 to configure and deploy security mechanisms. As mentioned
— P:gﬁ'lz = eer 3 Peer along the paper, existing approaches lack flexibility sithesy
Outgoing - do not provide a wide range of requirements in an integrated
Incoming Authorization (RBAC-based access control) fashion. Besides, they demand from the user/applicatien th
_ manipulation of a complex programming interface and the
Profile E: Peerl, Peer 2 Peer 3

handling of an awkward configuration process.

To address the aforementioned issues we have proposed

P2PSL (P2P Security Layer). It allows the inclusion of seégur
of a grid application. The application used was one to computinctionality into P2P applications, respecting the issoé
deterministic modeling of intracellular viral kinetic€]). All (i) integration of security aspects into a single applwati
peers ran on hosts with a 2.4 GHz Intel Pentium4 CPU, (i) isolation between the security mechanisms and both the
GB RAM, and a Fast Ethernet network interface card. Thapplication and underlying middleware; (iii) asymmetry of
communication profiles employed by each peer were the sasezurity allowing each peer to choose, independently from
enumerated in Table . each other, which requirements should be respected; apd (iv
In the communication between peers 1 and 2 the secur dual deployment of the scheme in the P2P network. P2PSL

modules were configured as follows: PGP signatures wi s been successfully used in a P2P-based grid computing

1024 bit DSA keys, PGP criptography with 1024 bit E| Gamdfrastructure [1].

keys, RBAC-based access control with a single policy, ahd the future we expect to perform the incorporation of P2PSL
log generation with medium level of detail (storing, for bacinto additional peer-to-peer applications. This will eleab
message, sender and recipient identifiers, name of theisecu#s to better evaluate the security layer developed, special
modules applied, message size, as well as send and recé#eenerality and adherence to other applications. We also
timestamps). For the communication between Peer 1 and Pigéend to develop extra security modules comprising aoldét

3 (which does not execute P2PSL), the former has beggcurity requirements, broadening the applicability oPBE.
configured to employ the log generation module with high

level of detail. REFERENCES

Table II shows the overhead (in milliseconds) induced byi) N. Andrade, W. Cirne, F. V. Brasileiro, and P. Roisenbé&@urGrid: An
P2PSL on the execution of the application just mentioned. Approach to Easily Assemble Grids with Equitable Resourkari@g,”

; in Job Scheduling Strategies for Parallel Processing, Otlerimational,
The results correspond to average values obtained by the Workshop, JSSPP 200Bp. 61-86, June 2003,

difference betwec_en the timestamp of a message arriving B4 “Groove Virtual Office,” Aug. 2005. http://www.grooveet/.
a peer and the timestamp of the next message sent by it 8] G. Lawton, “Is Peer-to-Peer Secure Enough for Corpotige?,’[EEE
reaction to the message received. The values presentei) are (Computer vol. 37, pp. 22-25, Jan. 2004.
. 9 .. P d gl(j L. Gong, “JXTA: A Network Programming EnvironmeniEEE Internet

the computational cost of P2PSL alone and (ii) the aggrelgate ™ computing vol. 5, pp. 88-95, June 2001.
cost of P2PSL and OurGrid to process an incoming messagf# “The Peer-to-Peer Trusted Library,” Aug. 2005. httpotirceforge.net/
and react to it. These values are organized per protocobpha? projects/ptpt. . o .

VN tiation Task initialization Task executionand 6] Y. Kim, D Mazzocchi, and G. T§ud|k, Admls;lon Controh iPeer
nf"‘m?y _ego n n - _0’ Groups,” in Second |EEE International Symposium on Network Com-
Finalization whose messages were illustrated in Figure 10. puting and Applicationsp. 131, Apr. 2003.

TABLE I
COMMUNICATION OVERHEAD INTRODUCED BY P2PSLIN EACH PROTOCOL PHASEIN MILLISECONDS.

Peer 1 - Peer 2l Peer 2 - Peer 1| Peer 1-Peer3 Peer3-Peerl
P2PSL | Total | P2PSL| Total P2PSL | Total | P2PSL| Total

Negotiation 653 1182 753 1401 84 765 - 1590
Task Initialization 502 991 555 1467 104 983 - 684
Task Execution - - 625 182864 - - - 222287
Finalization 685 1574 455 2721 47 568 - 2324

[7] J. S. Park and J. Hwang, “Role-based Access Control fdlaBaorative
Enterprise In Peer-to-Peer Computing EnvironmentsPrioceedings of
the eighth ACM symposium on Access control models and teclies
pp. 93-99, 2003.

[8] “Web Services Security (WS-Security) Specification,ind 2004.
http://www-106.ibm.com/developerworks/webservideséry/ws-
secure.

[9] V. Welch and et al., “Security for Grid ServicedEEE Twelfth Interna-
tional Symposium on High Performance Distributed Compu¢tiPDC-
12), June 2003.

[10] N. Daswani, H. Garcia-Molina, and B. Yang, “Open Prabtein Data-
sharing Peer-to-Peer Systems,”|I@DT 2003 pp. 1-15, Jan. 2003.

[11] F. DePaoli and L. Mariani, “Dependability in Peer-ted? Systems,”
IEEE Internet Computingpp. 54-61, July 2004.

[12] “SETI@home project,” Aug. 2005. http://setiathonsblserkeley.edu/.

[13] I. Clarke and S. Miller, “Protecting Freedom of Infortitan Online with
Freenet,”IEEE Internet Computingvol. 6, pp. 40-49, Feb. 2002.

[14] “Consilient,” Aug. 2005. http://www.consilient.cdm

[15] “Skype,” Aug. 2005. http://www.skype.com/.

[16] “ICQ,” Aug. 2005. http://www.icq.com/.

[17] “Jabber Software Foundation,” Aug. 2005. http://wyaluber.org/.

[18] S. R. Waterhouse, D. M. Doolin, G. Kan, and Y. FaybislenikdXTA
Search: A Distributed Search Framework for Peer-to-Pedwdtks,”
IEEE Internet Computingvol. 6, pp. 68-73, Feb. 2002.

[19] “JAL - IXTA Abstraction Layer,” Aug. 2005. http://ezgtta.org/jal.html.

[20] “Bouncy Castle Project,” Aug. 2005. http://www.bowyweastle.org/.

[21] S. G. et al., “eXtensible Access Control Markup Langaid¥ACML)
Version 1.1. Committe Specification,” Aug. 2003.

[22] J.F. da Silva, L. P. Gaspary, A. M. P. Barcellos, and Atdok, “Policy-
based Access Control in Peer-to-Peer Grid System&GthnEEE/ACM
International Workshop on Grid Computinglov. 2005 (to appear).

[23] “Ourgrid Project,” Aug. 2005. http://www.ourgrid.gt

[24] R. Srivastava and L. and J. Yin, “Stochastic vs. Detestitn Modeling
of Intracellular Viral Kinetics,"Theory Biology vol. 218, pp. 309-321,
2002.

