
Flexible Security Configuration & Deployment
in Peer-to-Peer Applications

André Detsch
Luciano Paschoal Gaspary
Marinho Pilla Barcellos

Ricardo Nabinger Sanchez
Programa Interdisciplinar de Pós-Graduação em Computação Aplicada (PIPCA)

Universidade do Vale do Rio dos Sinos (UNISINOS)
São Leopoldo, Brazil

Abstract— The widespread adoption of P2P applications in envi-
ronments beyond ordinary file sharing demands the fulfillment of
several security requirements. Important steps have been taken
towards security in P2P systems, with relevant mechanisms being
proposed in the past to address specific vulnerabilities. However,
existing approaches lack flexibility, since they do not (include
enough mechanisms to) tackle a wide range of requirements inan
integrated fashion. In addition, they oblige the user/application
to manipulate a complex programming interface, as well as
going through a cumbersome configuration process. To address
these issues, we present P2PSL (P2P Security Layer), which
allows gradual and flexible integration of security functionality
into P2P applications. To show concept and technical feasibility,
we have implemented P2PSL, assessed the overhead it induces,
and incorporated the layer into a P2P-based grid computing
infrastructure.

I. I NTRODUCTION

Peer-to-peer (P2P) applications have gained widespread usage
in both academic and corporate environments. Although file
sharing and instant messaging applications are the most tra-
ditional examples, they are no longer the only ones to profit
from a P2P design. For instance, medium-sized applications,
whose groups are comprised of tens or hundreds of nodes (e.g.
resource sharing [1] and cooperative work [2]), are becoming
increasingly common. This is also the case in the corporate
arena, where P2P systems allow institutions to exchange
services [3].

Although P2P applications can help provide resource sharing
and collaboration in a large-scale, wide-area environments
with decentralized, loosely-coupled control, their diversifica-
tion and dissemination are hampered by their current lack
of security. It remains difficult to develop P2P applications
that address multiple combinations of security aspects, namely
confidentiality, authenticity, integrity, authorization, auditing,
non-repudiation, reputation, and anonymity. The reasons for
that are fourfold. First, existing schemes for securing P2P
applications cover only specific (security) aspects (e.g. au-
thentication and reputation) and cannot be easily integrated
into a single system. Second, they do not isolate the security
aspects from the application. Instead, they oblige the useror
the application developer to handle a complex programming
interface and go through a cumbersome configuration process.

Third, existing schemes demand a uniform, symmetric behav-
ior of all peers that comprise an application. For some P2P
applications, this limitation is undesirable, since the security
requirements can vary wildly among its users. To illustrate
using a trivial example, consider Skype, the VoIP application:
a given peer may establish different kinds of communication
with other peers, each one with its own security requirements
(e.g. corporate and home users may have different needs).

Fourth and last, current schemes provide poor or no support
for gradual deployment, because they need to be available in
all peers of an application. It is very hard, if at all possible,
to impose the abrupt adoption of a new security scheme in a
large scale, loosely-coupled system. Instead, we believe that
it is important for the success of P2P systems to allow the
coexistence between security-enabled peers and the ones that
are not.

This paper presents P2PSL, or Peer-to-Peer Security Layer,
which allows the inclusion of security functionality into P2P
applications and addresses the lack ofintegration, isolation,
asymmetry, and gradual deploymentjust mentioned. P2PSL
isolates the implementation of security aspects and their con-
figuration from both the P2P application and the underlying
communication middleware. Each peer may specify distinct
security requirements (complying with different restriction
degrees) for each communication channel established with
other peers. In addition, the deployment of P2PSL by the
peers that comprise the application can be done gradually.
The implementation is based on JXTA [4], a consolidated set
of protocols for P2P systems development, which has been
widely used by the community.

The remainder of the paper is organized as follows. Section
II discusses related work on security for peer-to-peer systems.
Section III describes typical P2P applications and their security
requirements in environments where security in general is
desirable. Sections IV and V explain P2PSL and the peer
configuration process, respectively. Section VI emphasizes
implementation aspects. Section VII presents performance
results obtained with the implementation, while Section VIII
demonstrates the use of P2PSL through a case study in
grid computing. Section IX closes the paper with concluding

remarks and perspectives for future work.

II. RELATED WORK

The design of new schemes to simplify the development
and deployment of secure P2P applications is of paramount
importance to expand their use. There have been attempts to
achieve that, such as JXTA and PtPTL – Peer-to-Peer Trusted
Library [5]. JXTA provides functionalities like encryption,
signatures, and hashes for the development of secure P2P
applications. However, it obliges the programmer to explicitly
include and handle security-related code, leading to additional
development complexity. PtPTL, on its turn, is an OpenSSL-
based API that allows for the establishment of trust between
individual peer-to-peer nodes as well as the creation of secure
groups of trusted peers. Both JXTA and PtPTL are restricted in
relation to the security mechanisms supported: authentication,
confidentiality, and integrity. When interested in employing
other mechanisms such as non-repudiation, authorization,au-
diting, and reputation, the application developer has almost no
support from the mentioned schemes.

The same limitation is observed in most (if not all) of the
work on P2P security. Kim et al propose in [6] an approach to
control peers joining a P2P group. The approach is comprised
of two components:Group CharterandGroup Authority. The
former is a digital document that informs the rules for a
peer to be accepted in a group while the latter is responsible
for enforcing these rules. AGroup Authority behaves as a
certification authority, emitting certificates stating whether a
certain member is authorized to join a given group or not. Park
et al define an access control architecture for P2P applications
based on RBAC (Role-based Access Control) [7]. The authors
propose a generic middleware, which operates much like a
service directory, indexing the resources available in thepeer-
to-peer network. A peer interested in providing the network
with a service (or resource) is supposed to register it into the
middleware. Access policies are also stored in the middleware.
Whenever a peer wishes to access a service or resource, it
sends a request to the middleware to find out which peer
provides the service and if it is entitled to the desired service.
In both papers, two important security requirements received
special attention: authentication and authorization. However,
like before, these are isolated implementations that cannot be
easily extended or integrated to other security mechanisms.

Regarding configuration of security in P2P applications, itis
particularly important to adopt more flexible, decentralized,
and close-to-user security mechanisms (machine user is typi-
cally also the administrator) due mainly to scalability concerns.
It is not the case of the aforementioned work ([6], [7]), which
require policies to be stored and maintained in centralized
servers. Approaches proposed by the web service [8] and grid
computing [9] communities, in spite of their generality and
completeness to secure loosely coupled distributed systems,
also fail in this regard. They still depend on a great deal
of configuration, which is often performed in a centralized
manner.

III. P2P APPLICATIONS AND THEIRSECURITY

REQUIREMENTS

In this section, we consider security requirements of P2P
applications. The inclusion of security functionality into appli-
cations is a hot topic in P2P research ([3], [10]). This concern
is fueled due to (i) the variety of attacks P2P applications are
intrinsically vulnerable to [11] (e.g. identity theft by unautho-
rized or falsely authorized parties, privacy invasion, loss of
data integrity, and repudiation of previous transactions), and
(ii) the interest of applying this technology in more important,
serious activities, such as the ones related to business in the
enterprise.

In Figure 1, we estimate the relevance of the main security
requirements for typical P2P applications, assuming theseare
used in a restrictive context. Because of the relative novelty
of the topic, our assessment in Figure 1 works only as a guide
for the identification of security requirements.

Fig. 1. Potential demand for security in typical P2P applications.

Observing Figure 1, notice that authenticity and integritycan
be important to all applications enumerated. Guaranteeing
confidentiality is also relevant in applications where private
information is exchanged in the communication. Distributed
computing applications pose more extensive security require-
ments, since they comprise the use of resources belonging
to several administrative domains (e.g. SETI@home [12] and
OurGrid [1]). Strong access control to resources and the
possibility to audit system execution are particularly impor-
tant in this context. Content sharing applications may have
different security requirements, depending on their purpose.
While applications such as Gnutella and Chord demand access
control and a reputation scheme to avoid misuse (e.g. free-
ride), Freenet [13] and alike aim at preserving anonymity to
content provider peers. Despite the need for rigid authenti-
cation, integrity, and confidentiality, collaborative computing
applications (e.g. Groove [2], Consilient [14], Skype [15])
are less demanding in relation to other security aspects. At
last, instant messaging applications (e.g. ICQ [16] and Jabber
[17]) have the lowest security requirements (when compared
to the other application categories mentioned), but this will
vary according to the nature of the remote meeting.

IV. P2P SECURITY LAYER (P2PSL)

In this section, we describe the components of the P2PSL
layer. First, we discuss how security modules are combined
like puzzle pieces to provide flexible, asymmetric security.
Then, we describe the characterization repository, which does
the mapping between modules and security requirements. Last,
we show how a configuration repository is used to keep track
of security requirements specified by both remote peers and
the local one.

P2PSL is based on the addition of a security layer which
is implemented and configured independently from both the
P2P application and the underlying communication middle-
ware. The security requirements are satisfied by modules
that implement different security techniques. In line with
the intrinsically decentralized nature of P2P applications, the
definition and configuration of modules to be employed is
done autonomously in each peer by the local user (helped
by a graphical interface, as explained later). The configuration
of the security layer is based onprofiles, each one serving
different security needs. So, known peers can be grouped in
one of the predefined profiles; peers unknowna priori are
automatically placed in a default profile.

Figure 2 shows an example of a network of peers using
P2PSL. The configurations for Peer 2 and Peer 3 are shown
in detail. To illustrate, consider Profile B in Peer 2, which
specifies that authentication must be applied to all outgoing
messages, and authentication and confidentiality are demanded
for all incoming ones. Peer 2 then associates such profile with
Peer 3, which means that Peer 2 will employ and require
authentication whenever communicating with Peer 3, as well
as confidentiality when receiving from it.

Fig. 2. Network of peers using P2PSL.

The P2PSL instance associated with the peer during system
operation behaves like a wrapper between a P2P application
and the underlying communication middleware. Whenever
messages are received or sent, the selected modules are
triggered to guarantee the security requirements established.
Figure 3 illustrates this process, where Peer 2 employs Profile
B to send to and receive from Peer 3. In this example, outgoing
messages are passed to a digital signature module. A module

may perform changes in the message according to the security
requirement being enforced; this is the case in the example,
where a signature is added. Incoming messages, on their turn,
are passed to the digital signature and cryptography modules,
also according to Profile B. If the message goes through
successfully, it is delivered to the application. Otherwise,
depending on the characteristics of the module, the message
is simply discarded.

Fig. 3. P2PSL instance in a peer.

A. Security modules

The security modules are the key pieces of P2PSL. Each
security technique implemented is represented through one
of these modules. For example, the message auditing support
is typically implemented through a log generation module;
authentication and message integrity, through a digital signa-
ture module; and access control to resources (authorization),
through verification of access policies.

The modules are based on the utilization of a generic interface,
which allows the addition of new modules in a simple manner.
Each module has methods for the verification of incoming
messages and for the preparation of outgoing messages. When
invoked by the security layer, the module does the processing
needed (possibly changing message contents) and returns the
status informing whether the operation was successful or not.

B. Characterization repository

Conceptually, the security modules differ among each other
in regards to input parameters and utilization dynamics. An
independent repository is used to handle such heterogeneity
and avoid integrating directly into P2PSL the characteristics of
each idealized module. The repository is implemented through
an XML file, which contains the characterization of available
modules. It defines the parameters and the usage of each
module, as well as the combination of modules that fulfill
each of the security requirements.

The parameters of each module must be configured so that
it behaves properly. Examples of parameters are the identifi-
cation of a key to be employed in ciphering or in a digital
signature, the level of detail to be used in a log generation
module, and the pathname of a file with access policies for
an authorization module. In addition, some of the parameters
specified locally can be important for other peers in the
network. For example, if a peer wishes to encode a message
using asymmetric cryptography, it needs to know in advance

the key employed by the destination peer. Such information is
negotiated through a configuration protocol (see Section V).

P2PSL associates four basic characteristics (specified
through attributes) for each module. The first attribute
(export requirement) specifies if message changes
must be performed at the sender or not in order to allow
the module to be used at the receiver. For example, in
modules that involve techniques like authentication and
cryptography, the outgoing message needs to be changed
in order to allow the recipient to apply the technique when
the message is received. On the other hand, with modules
such as the log generation and the verification of access
policies, the original content of the message is enough
to apply the technique upon receipt. The second attribute
(obligatory if applied) indicates whether or not
it is mandatory to apply the module when the message
is received to recover the original data. This is the case
with cryptography modules, but not with authentication, as
the latter only adds a signature to the message. The third
and fourth attributes (allow on bcast sending and
discard on failure) regard, respectively, the possibility
of employing a module in broadcast transmissions, and the
need to discard a message when it fails the verification
process upon receipt.

The repository stores, besides parameters and attributes of
each module, the mapping between requirements and security
modules. Note that this mapping is not 1:1, since a module can
serve more than one security requirement, and a requirement
can demand multiple modules. For instance, the combination
of modules for verification via SHA-1 hash and another for
signature of this verifier represents an option of message
authentication. The following items map the most relevant
security requirements addressed in Section III and examples
of techniques that can be employed in P2PSL:

• Confidentiality: PGP cryptography, RSA cryptography,
RC4 cryptography;

• Authenticity: PGP signature, RSA signature, RC4 cryp-
tography, Message authentication code, SHA-1 hash +
PGP signature on digest, SHA-1 hash + RSA signature
on digest, SHA-1 hash + RC4 signature on digest;

• Integrity: PGP signature, RSA signature, RC4 cryptogra-
phy, Message authentication code, SHA-1 hash + PGP
signature on digest, SHA-1 hash + RSA signature on
digest, SHA-1 hash + RC4 signature on digest;

• Authorization: RBAC-based access control;
• Non-repudiation: On-line service for evidence genera-

tion/verification, PGP signature + time-stamping, RSA
signature + time-stamping;

• Reputation: Debit-credit reputation, feedback-based rep-
utation, credit-only reputation.

Figure 4 shows as an example parts of a characterization
file (in XML). Lines 2-22 indicate the security modules
available. The definitions regarding the PgpEncryption module
are shown in detail. Lines 3-7 define the usage characteristics
of the module, setting each one of the four attributes previously

explained. Lines 8-17 specify parameters. Lastly, lines 24-28
illustrate the mapping between the set of security requirements
satisfied and the existing modules; there, it defines that confi-
dentiality is obtained through PgpEncryption.

1 <static_features>
2 <modules>
3 <module name="PgpEncryption"
4 export_requirement="true"
5 obligatory_if_applied="true"
6 allow_on_bcast_sending="false"
7 discard_on_failure="false">
8 <parameters>
9 <parameter name="public_keys_file"

10 default="˜/.gnupg/pubring.gpg"/>
11 <parameter name="secret_keys_file"
12 default="˜/.gnupg/secring.gpg"/>
13 <parameter name="my_encryption_key_id"
14 default="" remote="true"/>
15 <parameter name="pass_phrase"
16 default=""/>
17 </parameters>
18 </module>
19 <module name="PgpSignature">...</module>
20 <module name="Log">...</module>
21 <module name="PoliciesChecking">...</module>
22 </modules>
23 <requirements>
24 <requirement name="Confidentiality">
25 <option>
26 <option_module name="PgpEncryption"/>
27 </option>
28 </requirement>
29 ...
30 </requirements>
31 </static_features>

Fig. 4. Example of module characterization.

C. Configuration repository

The configuration repository contains all the information re-
quired by the security layer to properly employ the modules
specified by the user. The repository is implemented through
an XML file and its main role is to store the configuration
regarding each profile. Notice that the security requirements
and modules to be applied are specified independently for
incoming and outgoing communication channels. Figure 5
provides an example of profile representation; it refers to
Profile B of Peer 2 shown in Figure 3. Besides the profile
definition, the XML file contains the list of remote peers and
their requirements, as well as standard settings for the modules
locally available.

An important attribute set for each profile is named
respect remote requirements (as indicated by line 2
in Figure 5). When this attribute is enabled, requirements of
remote peers (i.e., security modules) are automatically satisfied
(using corresponding modules) when messages are exchanged
with peers belonging to the corresponding profile. Note that
the set of modules applied will be the union of modules locally
specified by the profile and the ones demanded by (a profile
in) the remote peer.

1 <profile name="ProfileB"
2 respect_remote_requirements="true">
3 <incoming_requirements>
4 <requirement name="Authentication"/>
5 <requirement name="Confidentiality"/>
6 </incoming_requirements>
7 <outgoing_requirements>
8 <requirement name="Authentication"/>
9 </outgoing_requirements>

10 <incoming_modules>
11 <module name="PgpSignature"/>
12 <module name="PgpEncryption"/>
13 </incoming_modules>
14 <outgoing_modules>
15 <module name="PgpSignature"/>
16 </outgoing_modules>
17 <profile_peer_members>
18 <profile_peer_member name="Peer3"/>
19 </profile_peer_members>
20 </profile>

Fig. 5. Example of profile configuration.

V. PEER CONFIGURATION

P2P networks are expected to be dynamic, heterogeneous and
asymmetric in terms of security. Because of these properties,
it is unfeasible to manually configure the security layer of a
peer in regards to every other peer. P2PSL tackles this problem
in two ways. First, it lets users to classify peers accordingto
profiles (as presented in the previous section). Second, the
security layer includes mechanisms that guide and automate
the configuration process, allowing a large number of peer
relationships to be managed effortlessly.

In this section, we build on the description of P2PSL and
present the three differentconfiguration momentsthrough
which peers go through during their lives: (i) an initial setup
that precedes the activation of a peer, (ii) a negotiation when
the peer enters the network, and (iii) configuration adjustments
that occur in response to P2P network changes. Each one is
detailed below.

The first moment refers to the initial setup. Before a peer
with P2PSL is run, it needs to create a pair of keys and
publish the public one. This is required to provide authenticity
and integrity incontrol messages exchanged by peers. The
creation of a pair of PGP keys can be done using a tool
external to P2PSL, like GnuPG or Kgpg. For publishing, there
are two alternatives: one is to use PGP in a decentralized
manner, whereas the other is to employ a centralized CA
(Certification Authority) server. The latter is adopted in our
case study. Whenever a peer receives a message signed with
an unknown key, it enquires the CA about the public key of
the corresponding remote peer and stores it locally for further
use.

When a peer ingresses a P2P network, it needs to find about
other active peers. As far as P2PSL is concerned, a peer needs
to determine the set of security mechanisms demanded by
each other peer it wishes to communicate with. This corre-
sponds to the second configuration moment. The protocol that
drives this communication relies on three basic communication

primitives, namelysend (unicast),receiveand broadcast, to
be provided by the underlying middleware, JXTA (so, the
semantics for those primitives follows JXTA).

The protocol is described below through an example, which
is illustrated in Figure 6. We assume, for now, there are no
failures in the P2P network, and discuss later assumptions and
implications about faults. Let Peer 1 be the peer that entersthe
network, and Peer 2 and Peer 3 peers that are already active.
Assume further that Peer 2 knows about Peer 1 and has a copy
of its public key, while Peer 3 and Peer 1 did not know about
each other. The protocol works in three steps:

1) Peer 1, entering the network, broadcasts a signedRe-
quirements requestmessage.

2) Peer 2 receives the message, checks the signature, and
immediately replies to Peer 1 withRequirements request
and replyspecifying its requirements towards Peer 1 and
at the same time asking Peer 1 about its requirements
towards Peer 2. Peer 3 also receives theRequirements
requestmessage but is unable to check it. Peer 3 fetches
from the CA the public key of Peer 1, verifies the
message from Peer 1, and assuming the message is
correct, sends aRequirements request and replyto Peer 1
(similarly to Peer 2).

3) Peer 1 verifies the signature ofRequirements request and
reply received from Peer 2. Assuming the message is
correct, Peer 1 sends an individualRequirements replyto
Peer 2 containing its own requirements towards Peer 2.
Peer 1 does similarly for Peer 3, but before replying it
needs to fetch the public key of Peer 3 from the CA.

Fig. 6. Time diagram representing discovery of requirements of other peers.

Some of the messages in response to the broadcast may
come from previously unseen peers. As already mentioned,
the authenticity of messages is ensured by means of digital
signatures. If a peer, at any moment, receives a message signed
with an unknown key, it sends a request to the CA to fetch the
corresponding public key. In the example, Peer 3 did not know
about Peer 1 and therefore needed to fetch the public key of
Peer 1 from the CA. Likewise, Peer 1 did not know about
Peer 3, and consulted the CA as well. If a signed message
received does not match the expected digital signature, thepeer
will ignore it. In addition, it places peers that (consistently)

send invalid messages in a profile associated with banned
peers, and hence refuse any further communication with them.

Peers that were unknown previously are at first deemed un-
trusted and automatically placed in one of the two predefined
profiles, as follows. Thelegacyprofile refers to peers that do
not have the security layer implemented or properly configured
(e.g., with an invalid digital signature). Thedefault profile
refers to peers that implement the security layer and possess a
valid digital signature, but were previously unseen by thispeer
(e.g., first time the peer encounters this peer id). Recall that in
Figure 6 we assumed that Peer 1 did not know about Peer 3.
In this case, Peer 3 is associated with the default profile.

So, at the end of the second configuration moment, a peer
will have determined the set of requirements (modules to be
applied locally) when sending to or receiving from every other
peer it wishes to communicate with, and will have told these
peers which are its own requirements.

The third and last configuration moment refers to the changes
in the security configuration of a peer, which can happen at
any time during its life. This is more likely in long-lived
applications, where there is enough time for new peers to come
in or existing peers to change their own requirements. If so,in
reciprocity, a peer may wish to update its own requirements
towards another peer. This would be typically achieved by
moving a peer from one profile to the other. It is also possible
to change the requirements associated with a profile, the one
which the remote peer belongs to, but with consequences to
the other peers as well.

The introduction of new requirements affects other peers
and needs to be communicated to them. When a peer, say,
Peer 1, changes the set of requirements towards another peer,
say Peer 2, Peer 1 sends a message to Peer 2 informing
the new requirements. If the set of requirements regarding
Peer 2 is augmented, messages sent by Peer 1 to Peer 2
would be affected immediately. To allow a graceful increaseof
requirements, a transition interval can be specied by the user,
temporarily delaying the application of restricting measures.

In the description above, we assumed there would be no
failures in the network or in the peers. Now we consider
some of the most common types of failures that can happen
in a P2P system, and how P2PSL is affected by them. First, a
peer may fail to receive a response to aRequirements request
message from an active peer due to a network-related failure
(partition). To handle this problem, a peer needs to employ
timers to prevent indefinite waiting. A peer that fails to respond
will not have its requirements registered and, therefore, will
remain in the default or legacy profiles (considered unsafe
for communication). So, the waiting timer needs to be long
enough, since in case of peer or network contention, the arrival
of messages can be arbitrarily delayed. Further, a peer may
crash, in which case other peers may have to limit waiting
for messages. Finally, P2PSL has no support for Byzantine
failures, when a (potentially trusted) peer starts behaving
arbitrarily during operation, maliciously or not.

VI. I MPLEMENTATION

P2PSL was implemented in Java, using JXTA ([4], [18]) as
the underlying communication middleware. JXTA is a project
that aims to establish a set of implementation-independent
protocols that allow the creation of a general-purpose P2P
structure, which can be employed by different applications.
More specifically, the implementation was based on the JXTA
Abstraction Layer (JAL - [19]), a library whose main goal is to
ease the development of P2P applications on top of JXTA. JAL
abstracts several aspects of the JXTA architecture, offering
the programmer a simpler interface to access common func-
tionality in P2P systems, like message transmission (unicast
or broadcast), creation of groups or resource search. JXTA
is widely used in a variety of projects and research work,
allowing our implementation to be useful for several existing
systems.

Figure 7 shows the P2PSL implementation overall struc-
ture. Its main piece is classSecurePeer , which acts
as a wrapper that intercepts messages being sent or re-
ceived by the peer. The modules are specializations of class
SecurityModule , which offers a generic access interface
that is employed by classSecurePeer . The methods in
SecurityModule represent the verification of each incom-
ing and outgoing message (verifyIncomingMessage and
adjustOutgoingMessage , respectively) to see if they
satisfy the requirements specified. The access to the modules is
done solely through this generic interface. Along with dynamic
class loading in module instantiation, it makes the security
layerextensible: new modules can be added without having to
recompile the rest of the layer.

Fig. 7. P2PSL implementation.

A. Available modules

Four modules were implemented to provide the following
security functionality: authentication, confidentiality, integrity,
authorization and possibility to audit message exchange. New
modules can be added with no change or source-code recompi-
lation, such as when incorporating a new security mechanism
or choosing an alternative technique more suitable for a given
scenario. In line with P2PSL philosophy, the modules were
implemented such that peers that do not have the security
layer can still participate on the system. This allows a gradual
adoption of the security layer in operational P2P systems, and
gives the user of each peer the choice of employing or not
the layer. Incidentally, peers that implement P2PSL can block

messages sent by peers that do not have it by requiring, for
example, message authentication from those peers. Next, we
present the modules that were implemented.

PGP signature. The PGP signature module aims to ensure au-
thenticity and integrity of message exchanges between peers.
In this model, public keys are stored in arbitrary servers, or
even exchanged directly between the interested parties. The
implemented module checks existing public and private keys
locally available in the node where the peer runs. These keys
can be managed through applications already consolidated
like GnuPG and Kgpg. The private key used is established
previously by the user (through an input parameter), and the
generated signature is added to each message sent using a
specific field. When messages are received, the signature is
verified through the corresponding public key. If the signature
is valid, the message can be forwarded to other modules or
delivered to the application. Otherwise, and if the peer was
configured to require authentication, the message is discarded.
The generation of signatures is based on the BouncyCastle [20]
library, which implements the PGP algorithms. Note that PGP
allows the use of different signature generation algorithms,
like RSA and DSA, as well as the specification of the key
size. Both characteristics are specified when the pair of keys
is created.

PGP cryptography. Like in the previous module, this one
employs the facilities provided by PGP to guarantee mes-
sage confidentiality. The PGP cryptography module available
extracts from the outgoing message all fields inserted by
the application, and then generates a byte array which is
cryptographed and inserted in the message in a specific field.
When it is received, this array is deciphered, and the fields
of the original message are reconstructed and reinserted inthe
message, so that it remains transparent to the application.Like
the signature module, routines provided by the BouncyCastle
library are used.

Verification of access policies. Aiming to provide access
control to resources (authorization), the module for policy
verification uses generic information in the message (like date,
message size and sender identification) to define if the message
can be delivered or not. Specification and verification of poli-
cies are based on XACML [21], a standard created by OASIS
for the definition of access control policies through XML. The
policies are defined classifying the peers in roles, following the
Role-based Access Control (RBAC) mechanism. Hence, two
distinct repositories are established (both implemented through
XML files): one for the specification of access policies, and
other to fit the peers in the defined roles. Whenever a message
is received, the roles played by the sender are determined
and the current policies consulted, based on the information
relevant to access control. This query is processed using the
Sun XACML library, and returns as result whether the access
can be granted. If access is not allowed, the message is silently
discarded. Refer to [22] for further details on this module.

Log generation. When used, the log generation module cre-
ates, according to a preset level, a trace that presents informa-

tion about the exchanged messages. Examples of information
are the instant of each event, characteristics of messages and
information about peers taking part in the communication. The
output is directed to a file established during configuration.
Through this module it is possible to audit the message
exchange, identifying problems in the way the application is
functioning or being used.

B. Configuration assistant

To ease the task of adjusting the configuration repository,
described in Section IV-C, a Graphical User Interface (GUI)
is provided. This GUI or front end is activated during the peer
configuration process, described in Section V. For each profile,
the user specifies the aspects to be met, and then determine
the combination of available techniques to reach the desired
goal.

Figure 8 presents a snapshot of the tool with the security
profile configuration screen, where parameters can be specified
for a module (in the case shown, a PGP signature). Once
completed, the established configuration can be written to the
XML file stored in the configuration repository and interpreted
by the security layer.

Fig. 8. GUI provided by configuration assistant.

VII. E XPERIMENTAL EVALUATION

The need for security, particularly in corporate applications,
is clear. However, the required security mechanisms to be
incorporated into a P2P application will introduce overheads.
This section presents an experimental evaluation with the
implementation of P2PSL. Our aim was to use this imple-
mentation as a proof-of-concept of P2PSL as well as make
measurements of the latency overhead induced by the security
layer.

Experiments were conducted using a synthetic load in order to
isolate and measure the overheads of P2PSL without modules
and of each module individually. They were performed in a
2.4 GHz Intel Pentium4 CPU with 1 GB RAM. Although we

investigated different choices for algorithms and key security
parameters, we report only the main results here. To obtain
statistically sound results, each experiment was repeated400
times. Adopting degree of confidence of 99%, the confidence
interval seen for any experiment was no larger than 0.38
(milliseconds).

Message size is expected to play an important effect into the
performance of the security layer, and so the experiments were
conducted using message size as a factor: 1, 2, 4, 8, 16, 32
and64 KiB of data, with randomly-generated contents. Figure
9 shows the average latency results for transmission (a) and
reception (b) of messages. The values shown in the plots refer
to P2PSL configured with no security modules (Empty Layer),
and to each module isolatedly1 (PgpSignature, PgpEncryption,
Logging,andPoliciesChecking).

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64

O
ve

rh
ea

d
(m

s)

Message Size (KB)

PgpEncryption
PgpSignature
Empty Layer

Logging

(a) send

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64

O
ve

rh
ea

d
(m

s)

Message Size (KB)

PgpEncryption
PgpSignature
Empty Layer

Logging
PoliciesChecking

(b) receive

Fig. 9. Overheads induced by the layer alone (no modules) andby each
module individually (no layer).

Examining the figure, first notice that the empty layer takes
around20 ms in both send and receive operations, with almost

1not including the empty layer overhead.

no variation regarding message size. As expected, the PGP
encryption module induces a very high overhead per message,
whose average reaches almost250 ms when ciphering mes-
sages of64 KiB. The overhead will depend on the key size;
in the experiments shown, we chose to use1024 bit. The PGP
signature module also induces substantial overhead, reaching
40 ms for the generation and verification of signatures in
messages of64 KiB. The module for access policy verification
(receiver only) presents low overhead, between 10 and15 ms

for a single rule, but the delays will be larger according to
the number of policies to be verified. The module for log
generation induces a small overhead, under6 ms, regardless
of message size, because in the experiments the level of detail
was set to “medium” and thus message contents were not
written to the log.

Overall, individual delays were large, typically within tens or
hundreds of milliseconds per message. These delays should
not be considered alone, but instead combined, since a given
P2P application is likely to employ multiple security modules.
In the worst case scenario, if all modules were employed and
messages were of64 KiB, total delays per message would
reach491 ms, that is, around288 ms for sending plus203 ms

for receiving.

For some applications, such delays would be unaffordable,
such as in interactive P2P applications. However, this kind
of application tends to use small messages (less than1 KiB),
in which case the worst-case delay would be almost halved,
around272 ms (153 ms for sending plus119 ms for receiv-
ing). Even so, with such a delay, the maximum transmission
capacity would be limited by the sender to six1 KiB-messages
per second.

Hence, the choice of modules for a specific peer will be
limited not only by the existing module implementations,
but also by the processing capacity available for this P2P
application in the node. On the other hand, the processing
delays introduce inherent costs that have been long associated
with implementing security. The above study highlights the
importance of flexibility and autonomy in choosing which
modules a peer will employ.

VIII. C ASE STUDY: P2P-BASED GRID COMPUTING

In this section we introduce a case study, which has been
carried out to show both concept and technical feasibility of
our proposal. We have incorporated P2PSL into OurGrid [1],
a P2P-based grid computing infrastructure.

The motivation for choosing OurGrid in this case study is
twofold. First, although it has a mature software implementa-
tion and is being deployed in production environments [23],
it currently lacks a robust security infrastructure, allowing
various kinds of attacks or misuses of the system. Second,
grid computing infrastructures demand several security re-
quirements, as claimed in Section III, which allows us to stress
the security layer.

The remainder of the section is organized as follows. First,
we introduce OurGrid and present an overview of its operation

protocol. Then, we describe how P2PSL has been incorporated
into OurGrid and illustrate the instantiation of a secured
grid infrastructure. By deploying such a setup we aimed to
assess the behavior of P2PSL regardingintegration, isolation,
asymmetry, and gradual deployment. Finally, we assess the
overhead induced by P2PSL in the execution of a real grid
application.

A. OurGrid and its operation protocol

OurGrid is a P2P-based middleware that enables the creation
of a multi-organization grid computing environment for the
execution of bag-of-tasks applications [1]. Each organization
in an OurGrid network has arepresentative peeras well as a
task scheduler, which manages the local resources. The peer
acts like a “broker” on the P2P network, trying to amass
remote resources whenever local ones are insufficient to serve
a request.

The main interactions of the OurGrid operation protocol are
illustrated in Figure 10. When the demand for resources by
users at an organization (say, Peer 1), exceeds the computing
capacity locally available, its peer broadcasts aConsumer-
Query request message to the remaining peers (message 1
in the figure). If any organization has idle resources that
satisfy the requirements of the set of tasks to be executed,
the request is replied with aProviderWorkRequestmessage
(2). In the example shown in Figure 10, organization 2 replies
to the request, while organization 3 does not. Upon receiving
one or more replies, Peer 1 chooses the organizations where
each task is going to be executed, sending them aProvider-
WorkRequestAckmessage (3). For the sake of simplicity, the
example shows a case where there is a single task in the
set. Peer 1 then starts to exchange messages with the peer
representing the chosen organization (Peer 2 in the example),
in order to prepare the execution of the task (4). This phase
of the protocol comprises both the creation of a temporary
space at the resource to run the task and the transfer of
necessary executable and data files. The task is then run (5).
Once finished (6), a new phase takes place during which the
resulting data is retrieved (7). Finally, after all tasks have
been concluded, Peer 1 sends a broadcast message to other
peers informing that the idle resources are no longer needed
to satisfy the request initially sent (8).

B. Instantiation of a secured grid infrastructure

As OurGrid communication relies on the JXTA/JAL classes,
its adaptation for P2PSL required only the replacement
of the classEZMinimalPeer (provided by JAL) by the
class SecurePeer (made available by P2PSL). Since
SecurePeer extendsEZMinimalPeer , all methods avail-
able inEZMinimalPeer remain available inSecurePeer .
Therefore, no changes in both the application and the underly-
ing communication middleware were needed, making evident
the isolation property of P2PSL.

Having incorporated the P2PSL into OurGrid, we instantiated
a real setup comprised of a dozen peers. For simplicity, we

Fig. 10. Protocol used by OurGrid peers to execute tasks remotely.

characterize a subset of the complete scenario consisting of
four peers – namely Peer 1, 2, 3, and 4. Figure 11 illustrates
the simplified scenario. Peer 1 represents an institution with
computational tasks pending to be executed and without avail-
able resources to run them. Peers 1, 2, and 4 execute using the
security layer. While Peers 1 and 2 were configured to allow
mutual communication, Peer 4 was setup to block messages
from Peer 1. Table I summarizes the configuration of the peers
that run P2PSL. In this scenario, we ran several jobs related
to bioinformatics.

Fig. 11. Simplified view of case study scenario.

We were able to observe P2PSL enforcing policies defined
by the user of a peer. For example, P2PSL running in Peer 4
discarded messages departing from Peer 1, due to a policy
defined in the former. We could also experiment with the
concepts ofintegration, employing several security aspects
using a single system, andasymmetry, specifying a number of
profiles for each peer and confirming that they were correctly
applied in every communication channel between peers.

C. Overhead assessment

Using the same setup just described we have also assessed the
communication overhead induced by P2PSL on the execution

TABLE I

CONFIGURATION OF THE PEERS RUNNINGP2PSL.

Peer 1 Profile A
Outgoing: Authentication (PGP signature) + Confidentiality
(PGP criptography) + Auditing (log generation)
Incoming: Authentication (PGP signature) + Confidentiality
(PGP criptography) + Auditing (log generation) +
Authorization (RBAC-based access control)
Profile B
Outgoing: Auditing (log generation)
Incoming: Auditing (log generation)

Profile A: Peer2
Profile B: Peer 3, Peer 4

Peer 2 Profile C
Outgoing: Authentication (PGP signature) + Confidentiality
(PGP criptography) + Auditing (log generation)
Incoming: Authentication (PGP signature) + Confidentiality
(PGP criptography) + Auditing (log generation) +
Authorization (RBAC-based access control)
Profile D
Outgoing: Auditing (log generation)
Incoming: Auditing (log generation)

Profile C:Peer1
Profile D: Peer 3, Peer 4

Peer 4 Profile E
Outgoing: -
Incoming: Authorization (RBAC-based access control)

Profile E:Peer1, Peer 2, Peer 3

of a grid application. The application used was one to compute
deterministic modeling of intracellular viral kinetics ([24]). All
peers ran on hosts with a 2.4 GHz Intel Pentium4 CPU, 1
GB RAM, and a Fast Ethernet network interface card. The
communication profiles employed by each peer were the same
enumerated in Table I.

In the communication between peers 1 and 2 the security
modules were configured as follows: PGP signatures with
1024 bit DSA keys, PGP criptography with 1024 bit El Gamal
keys, RBAC-based access control with a single policy, and
log generation with medium level of detail (storing, for each
message, sender and recipient identifiers, name of the security
modules applied, message size, as well as send and receive
timestamps). For the communication between Peer 1 and Peer
3 (which does not execute P2PSL), the former has been
configured to employ the log generation module with high
level of detail.

Table II shows the overhead (in milliseconds) induced by
P2PSL on the execution of the application just mentioned.
The results correspond to average values obtained by the
difference between the timestamp of a message arriving at
a peer and the timestamp of the next message sent by it in
reaction to the message received. The values presented are (i)
the computational cost of P2PSL alone and (ii) the aggregated
cost of P2PSL and OurGrid to process an incoming message
and react to it. These values are organized per protocol phase,
namely Negotiation, Task initialization, Task execution, and
Finalization, whose messages were illustrated in Figure 10.

One can observe from the table that the overhead induced
by the security layer in the communication between Peer 1
and Peer 2 ranges from 35% to 55%. On the other hand, in
messages exchanged between Peer 1 and Peer 3 the overhead
corresponds from 8% to 11% of the total communication cost.
These differences are explained by the security requirements
employed in each communication channel (restrictive in the
former and relaxed in the latter). The overall delays induced do
not affect substantially the performance of the application run-
ning on top of OurGrid, considering the parallelism achieved
in its execution and the predominance of task processing in
relation to message exchange times.

IX. CONCLUDING REMARKS

The diversification and dissemination of P2P applications,spe-
cially in scenarios where extensive security requirementsmust
be satisfied (e.g. enterprise content sharing and distributed
computing), depends on the availability of flexible approaches
to configure and deploy security mechanisms. As mentioned
along the paper, existing approaches lack flexibility sincethey
do not provide a wide range of requirements in an integrated
fashion. Besides, they demand from the user/application the
manipulation of a complex programming interface and the
handling of an awkward configuration process.

To address the aforementioned issues we have proposed
P2PSL (P2P Security Layer). It allows the inclusion of security
functionality into P2P applications, respecting the issues of:
(i) integration of security aspects into a single application;
(ii) isolation between the security mechanisms and both the
application and underlying middleware; (iii) asymmetry of
security allowing each peer to choose, independently from
each other, which requirements should be respected; and (iv)
gradual deployment of the scheme in the P2P network. P2PSL
has been successfully used in a P2P-based grid computing
infrastructure [1].

In the future we expect to perform the incorporation of P2PSL
into additional peer-to-peer applications. This will enable
us to better evaluate the security layer developed, specially
its generality and adherence to other applications. We also
intend to develop extra security modules comprising additional
security requirements, broadening the applicability of P2PSL.

REFERENCES

[1] N. Andrade, W. Cirne, F. V. Brasileiro, and P. Roisenberg, “OurGrid: An
Approach to Easily Assemble Grids with Equitable Resource Sharing,”
in Job Scheduling Strategies for Parallel Processing, 9th International,
Workshop, JSSPP 2003, pp. 61–86, June 2003.

[2] “Groove Virtual Office,” Aug. 2005. http://www.groove.net/.
[3] G. Lawton, “Is Peer-to-Peer Secure Enough for CorporateUse?,” IEEE

Computer, vol. 37, pp. 22–25, Jan. 2004.
[4] L. Gong, “JXTA: A Network Programming Environment,”IEEE Internet

Computing, vol. 5, pp. 88–95, June 2001.
[5] “The Peer-to-Peer Trusted Library,” Aug. 2005. http://sourceforge.net/

projects/ptptl.
[6] Y. Kim, D. Mazzocchi, and G. Tsudik, “Admission Control in Peer

Groups,” in Second IEEE International Symposium on Network Com-
puting and Applications, p. 131, Apr. 2003.

TABLE II

COMMUNICATION OVERHEAD INTRODUCED BY P2PSLIN EACH PROTOCOL PHASE, IN MILLISECONDS.

Peer 1 - Peer 2 Peer 2 - Peer 1 Peer 1 - Peer 3 Peer 3 - Peer 1
P2PSL Total P2PSL Total P2PSL Total P2PSL Total

Negotiation 653 1182 753 1401 84 765 - 1590
Task Initialization 502 991 555 1467 104 983 - 684
Task Execution - - 625 182864 - - - 222287
Finalization 685 1574 455 2721 47 568 - 2324

[7] J. S. Park and J. Hwang, “Role-based Access Control for Collaborative
Enterprise In Peer-to-Peer Computing Environments,” inProceedings of
the eighth ACM symposium on Access control models and technologies,
pp. 93–99, 2003.

[8] “Web Services Security (WS-Security) Specification,” June 2004.
http://www-106.ibm.com/developerworks/webservices/library/ws-
secure.

[9] V. Welch and et al., “Security for Grid Services,”IEEE Twelfth Interna-
tional Symposium on High Performance Distributed Computing (HPDC-
12), June 2003.

[10] N. Daswani, H. Garcia-Molina, and B. Yang, “Open Problems in Data-
sharing Peer-to-Peer Systems,” inICDT 2003, pp. 1–15, Jan. 2003.

[11] F. DePaoli and L. Mariani, “Dependability in Peer-to-Peer Systems,”
IEEE Internet Computing, pp. 54–61, July 2004.

[12] “SETI@home project,” Aug. 2005. http://setiathome.ssl.berkeley.edu/.
[13] I. Clarke and S. Miller, “Protecting Freedom of Information Online with

Freenet,”IEEE Internet Computing, vol. 6, pp. 40–49, Feb. 2002.
[14] “Consilient,” Aug. 2005. http://www.consilient.com/.
[15] “Skype,” Aug. 2005. http://www.skype.com/.
[16] “ICQ,” Aug. 2005. http://www.icq.com/.
[17] “Jabber Software Foundation,” Aug. 2005. http://www.jabber.org/.
[18] S. R. Waterhouse, D. M. Doolin, G. Kan, and Y. Faybishenko, “JXTA

Search: A Distributed Search Framework for Peer-to-Peer Networks,”
IEEE Internet Computing, vol. 6, pp. 68–73, Feb. 2002.

[19] “JAL - JXTA Abstraction Layer,” Aug. 2005. http://ezel.jxta.org/jal.html.
[20] “Bouncy Castle Project,” Aug. 2005. http://www.bouncycastle.org/.
[21] S. G. et al., “eXtensible Access Control Markup Language (XACML)

Version 1.1. Committe Specification,” Aug. 2003.
[22] J. F. da Silva, L. P. Gaspary, A. M. P. Barcellos, and A. Detsch, “Policy-

based Access Control in Peer-to-Peer Grid Systems,” in6th IEEE/ACM
International Workshop on Grid Computing, Nov. 2005 (to appear).

[23] “Ourgrid Project,” Aug. 2005. http://www.ourgrid.org/.
[24] R. Srivastava and L. and J. Yin, “Stochastic vs. Deteministic Modeling

of Intracellular Viral Kinetics,”Theory Biology, vol. 218, pp. 309–321,
2002.

