
On the Development of IETF-based Network 
Monitoring Probes for High Speed Networks

Ricardo Nabinger Sanchez
rnsanchez@cscience.org

Rodrigo Pereira
rspereira@exatas.unisinos.br

Luciano Paschoal Gaspary
 paschoal@exatas.unisinos.br

 
Universidade do Vale do Rio dos Sinos (UNISINOS)

Centro de Ciências Exatas e Tecnológicas, Brazil

http://prav.unisinos.br/~trace

The 3rd IEEE Latin American Network Operations and Management Symposium (LANOMS'2003)
Iguassu Falls, Brazil - September 4 - 6, 2003



2/17

Outline

Introduction

The Challenge of Network Monitoring

Brief RMON2 Review

RMON2 Agent’s Internals

Agent’s Architeture

What Does the Agent Collect?

How Does the Agent Store Collected Data?

Performance Analysis of the Agent

Conclusions and Future Work



3/17

Introduction

Currently, there is a large number of high-layer network 
protocols

For each high-layer protocol, there is a growing number of 
applications allowing its usage

It also exists a growing number of users that use an also 
growing number of applications directed to an even larger 
number of protocols

The ever growing network utilization implies in:

constant alterations in the network infrastructure 

upgrading or buying equipment for newer (and faster) 
networks



4/17

Introduction (continuing...)

Such modifications involve costs, which must be justified

The IETF (Internet Engineering Task Force) has been making 
efforts to standardize mechanisms that allow characterization 
and measurement of both protocols and networked applications 
behavior

Since the end of the 90’s, the rmonmib working group has been 
working on MIBs (Management Information Base) which provide 
accurate network information to the network manager, giving him 
means to justify investments

These standard MIBs also help in capacity planning, traffic 
characterization and network optimization



5/17

Project Goals

Our major goal is to provide the network community with a 
RMON2 compliant monitoring agent, designed to be used in 
GNU/Linux environments, which should be:

Efficient, so it can be deployed on shared x86 
workstations or dedicated low-end x86 stations

Fast, so it can monitor links such as Fast Ethernet, which 
operates at 100Mbps, with low or even no packet loss at 
all

Open and free software, as there is no such 
implementation available, on the hope of basing other 
network researches



6/17

The Challenge of Network Monitoring

Ethernet is the most widely used network type, whose 
speed may reach 10Gbps currently

On a 100Mbps Fast Ethernet link, we have:

packet rates from 8,127 to 148,810 packets per second

Thus, we have:

best case of 123.05µs to process a single packet at 
8,127 packets per second

worst case of 6.72µs to process a single packet at 
148,810 packets per second



7/17

Brief RMON2 Review



8/17

Agent’s Architeture



9/17

What Does the Agent Collect?

The agent recognizes and analyses only IP over ethernet packets

If so, it looks for IP version 4, discarding the packet if not

Being an IPv4 over ethernet, the agent collects the relevant data: 
network source and destination addresses, application source and 
destination ports

Additional info is not on the packet itself, such as network interface 
and system uptime on packet’s processing



10/17

How Does the Agent Store Collected Data?

Simple and small structures are implemented over array of pointers, 
as happens with the control tables. They are so simple that any other 
data structure imposes too much overhead.

Larger structures (simple or not) are implemented over hash tables, 
as happens with the data tables. These structures take advantage 
from the fast recovery times inherent to hash tables.

The agent uses a hash function known as “double hashing”, which 
deals better with collisions. 

While simpler hash functions deal with collisions by probing another 
table position within some prefixed range (generally 1, n or n²), 
double-hashing probes key-dependant positions, which are almost 
random. This greatly reduces the chance of a second collision for the 
same key.



11/17

Hash Tables Revisited

First, we create the key to be used in the hash function. 
We need to pick data which is very intimate to the 
packet that is very unlikely to be present on other 
packets, such as the network address. To get better 
results, we mix some data, like transport and 
application protocols

Then we apply the hash function over the key, with an initial offset of zero to 
get the first possible data index. This index is used to access the hash table, 
and the position must be checked to see if it’s the wanted one. In case of 
collision, the next offset is probed.

Example of hash table used in the alHost subtree



12/17

Performance Analysis of the Agent

Simple setup, connecting 2 hosts through a crossover UTP cable, at 
100Mbps, full-duplex

Agent host is a 1.7GHz Intel Pentium 4, running GNU/Linux Slackware 
Linux 8.1, with a 2.4.21 Linux kernel (compiled with architeture-
specific optimizations enabled)

Two test types:

Stress test to measure agent’s limits, consisting in the 
transmission of the same UDP packet one million times, varying 
only packet size and without any delay between packets. Linux 
kernel packet generator was used.

Realistic test, to verify how the agent would behave under real 
network traffic. A tcpdump trace file, containing one million 
packets (duration of about 30 seconds) was used and replayed at 
nominal rate.



13/17

Stress Test Results



14/17

Stress Test Results - Detail



15/17

Realistic Test

The test was run 20 times, and the average packet loss was of 
23.9608%

We found several factors which contributed to this significative packet 
loss rate:

The protocolDir cache mecanism still imposes too much CPU 
usage

Under heavy network load, the Linux kernel uses a considerable 
amount of CPU. Measurements showed that this usage can get as 
high as 48%, due to network card interrupt handler. This was 
improved on Linux kernels 2.5, and will de available on 2.6.

libpcap default installation presents a small buffer, insufficient to 
cope with high network load

The agent is still under optimization to be able to handle this 
standard MIB efficiently and with lower CPU usage



16/17

Conclusions and Future Work

Passive network monitoring demands high CPU power, and thus, 
any further processing must be very efficient to avoid 
considerable packet loss rate

As happens with other MIBs standardized by IETF, the large 
quantity of objects demands a high computacional effort in order 
to keep these data real-time updated, which turns into a complex 
task

Althought not tested again, the RMON2 agent is expected to deal 
a lot better with realistic traffic, due to the protocolDir table 
conversion to hash table

Modifying libpcap is planned, giving it larger buffers to support 
heavy network load while we design a better solution



17/17

Questions?

Thank you!

Ricardo Nabinger Sanchez
rnsanchez@cscience.org
http://prav.unisinos.br/~trace

The RMON2 Agent is ready to be downloaded!
Please contact us so we can provide instructions


